{"title":"电子-声子相互作用对热输运的影响:综述","authors":"Y. Quan, Shengying Yue, Bolin Liao","doi":"10.1080/15567265.2021.1902441","DOIUrl":null,"url":null,"abstract":"ABSTRACT A thorough understanding of the microscopic picture of heat conduction in solids is critical to a broad range of applications, from thermal management of microelectronics to more efficient thermoelectric materials. The transport properties of phonons, the major microscopic heat carriers in semiconductors and insulators, particularly their scattering mechanisms, have been a central theme in microscale heat conduction research. In the past two decades, significant advancements have been made in computational and experimental efforts to probe phonon-phonon, phonon-impurity, and phonon-boundary scattering channels in detail. In contrast, electron-phonon scatterings were long thought to have negligible effects on thermal transport in most materials under ambient conditions. This article reviews the recent progress in first-principles computations and experimental methods that show clear evidence for a strong impact of electron-phonon interaction on phonon transport in a wide variety of technologically relevant solid-state materials. Under thermal equilibrium conditions, electron-phonon interactions can modify the total phonon scattering rates and renormalize the phonon frequency, as determined by the imaginary part and the real part of the phonon self-energy, respectively. Under nonequilibrium transport conditions, electron-phonon interactions can affect the coupled transport of electrons and phonons in the bulk through the “phonon/electron drag” mechanism as well as the interfacial thermal transport. Based on these recent results, we evaluate the potential use of electron-phonon interactions to control thermal transport in solids. We also provide an outlook on future directions of computational and experimental developments.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"25 1","pages":"73 - 90"},"PeriodicalIF":2.7000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2021.1902441","citationCount":"15","resultStr":"{\"title\":\"Impact of Electron-Phonon Interaction on Thermal Transport: A Review\",\"authors\":\"Y. Quan, Shengying Yue, Bolin Liao\",\"doi\":\"10.1080/15567265.2021.1902441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A thorough understanding of the microscopic picture of heat conduction in solids is critical to a broad range of applications, from thermal management of microelectronics to more efficient thermoelectric materials. The transport properties of phonons, the major microscopic heat carriers in semiconductors and insulators, particularly their scattering mechanisms, have been a central theme in microscale heat conduction research. In the past two decades, significant advancements have been made in computational and experimental efforts to probe phonon-phonon, phonon-impurity, and phonon-boundary scattering channels in detail. In contrast, electron-phonon scatterings were long thought to have negligible effects on thermal transport in most materials under ambient conditions. This article reviews the recent progress in first-principles computations and experimental methods that show clear evidence for a strong impact of electron-phonon interaction on phonon transport in a wide variety of technologically relevant solid-state materials. Under thermal equilibrium conditions, electron-phonon interactions can modify the total phonon scattering rates and renormalize the phonon frequency, as determined by the imaginary part and the real part of the phonon self-energy, respectively. Under nonequilibrium transport conditions, electron-phonon interactions can affect the coupled transport of electrons and phonons in the bulk through the “phonon/electron drag” mechanism as well as the interfacial thermal transport. Based on these recent results, we evaluate the potential use of electron-phonon interactions to control thermal transport in solids. We also provide an outlook on future directions of computational and experimental developments.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"25 1\",\"pages\":\"73 - 90\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2021.1902441\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2021.1902441\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2021.1902441","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact of Electron-Phonon Interaction on Thermal Transport: A Review
ABSTRACT A thorough understanding of the microscopic picture of heat conduction in solids is critical to a broad range of applications, from thermal management of microelectronics to more efficient thermoelectric materials. The transport properties of phonons, the major microscopic heat carriers in semiconductors and insulators, particularly their scattering mechanisms, have been a central theme in microscale heat conduction research. In the past two decades, significant advancements have been made in computational and experimental efforts to probe phonon-phonon, phonon-impurity, and phonon-boundary scattering channels in detail. In contrast, electron-phonon scatterings were long thought to have negligible effects on thermal transport in most materials under ambient conditions. This article reviews the recent progress in first-principles computations and experimental methods that show clear evidence for a strong impact of electron-phonon interaction on phonon transport in a wide variety of technologically relevant solid-state materials. Under thermal equilibrium conditions, electron-phonon interactions can modify the total phonon scattering rates and renormalize the phonon frequency, as determined by the imaginary part and the real part of the phonon self-energy, respectively. Under nonequilibrium transport conditions, electron-phonon interactions can affect the coupled transport of electrons and phonons in the bulk through the “phonon/electron drag” mechanism as well as the interfacial thermal transport. Based on these recent results, we evaluate the potential use of electron-phonon interactions to control thermal transport in solids. We also provide an outlook on future directions of computational and experimental developments.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.