基于热力学耦合的硬质合金砧硬质合金层厚度优化

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanika Pub Date : 2022-10-21 DOI:10.5755/j02.mech.30808
G. Xie, Tao Wang, Liangwen Wang, Xiaoyun Gong, Shixin Zhang, Zeheng Zhi, Ziye Zhao, Xiaojun Yang
{"title":"基于热力学耦合的硬质合金砧硬质合金层厚度优化","authors":"G. Xie, Tao Wang, Liangwen Wang, Xiaoyun Gong, Shixin Zhang, Zeheng Zhi, Ziye Zhao, Xiaojun Yang","doi":"10.5755/j02.mech.30808","DOIUrl":null,"url":null,"abstract":"This paper presents cemented carbide layer thickness optimization of a carbide anvil based on thermodynamic coupling analysis. In our method, the established carbide anvil system through SolidWorks is firstly imported into the finite element software. The temperature field and thermal-mechanical coupling field of the carbide anvil system are analyzed. From the simulation results, it can be found that the contact stress of steel ring under temperature load is increased by 17.9% compared with that without temperature load. Thus, the service life of carbide anvil under temperature load is lower than that without temperature load. In addition, the four edges of anvil are prone to fatigue cracks due to the phenomenon of shear stress concentration. This is consistent with the actual crack location of cemented carbide anvil, which verifies the accuracy and rationality of thermal-mechanical coupling simulation. The thickness of cemented carbide layer is optimized based on thermodynamic coupling. The optimization results show that the thickness of 1.8cm is the best when size ranges from 1.8cm to 2.2cm. The maximum contact stress, the maximum shear stress, the temperature are all reduced by 387.5MPa, 110.55MPa, and 10.11℃, respectively.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cemented Carbide Layer Thickness Optimization of Carbide Anvil Based on Thermodynamic Coupling\",\"authors\":\"G. Xie, Tao Wang, Liangwen Wang, Xiaoyun Gong, Shixin Zhang, Zeheng Zhi, Ziye Zhao, Xiaojun Yang\",\"doi\":\"10.5755/j02.mech.30808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents cemented carbide layer thickness optimization of a carbide anvil based on thermodynamic coupling analysis. In our method, the established carbide anvil system through SolidWorks is firstly imported into the finite element software. The temperature field and thermal-mechanical coupling field of the carbide anvil system are analyzed. From the simulation results, it can be found that the contact stress of steel ring under temperature load is increased by 17.9% compared with that without temperature load. Thus, the service life of carbide anvil under temperature load is lower than that without temperature load. In addition, the four edges of anvil are prone to fatigue cracks due to the phenomenon of shear stress concentration. This is consistent with the actual crack location of cemented carbide anvil, which verifies the accuracy and rationality of thermal-mechanical coupling simulation. The thickness of cemented carbide layer is optimized based on thermodynamic coupling. The optimization results show that the thickness of 1.8cm is the best when size ranges from 1.8cm to 2.2cm. The maximum contact stress, the maximum shear stress, the temperature are all reduced by 387.5MPa, 110.55MPa, and 10.11℃, respectively.\",\"PeriodicalId\":54741,\"journal\":{\"name\":\"Mechanika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.mech.30808\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.30808","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

基于热力学耦合分析,对硬质合金砧的硬质合金层厚度进行了优化。在我们的方法中,首先将通过SolidWorks建立的硬质合金砧座系统导入有限元软件中。分析了硬质合金砧座系统的温度场和热-机械耦合场。从模拟结果可以发现,在温度载荷下,钢圈的接触应力比没有温度载荷时增加了17.9%。因此,硬质合金砧在温度负载下的使用寿命低于没有温度负载时的使用寿命。此外,由于剪切应力集中的现象,砧座的四个边缘容易产生疲劳裂纹。这与硬质合金砧座的实际裂纹位置一致,验证了热机械耦合模拟的准确性和合理性。基于热力学耦合对硬质合金层的厚度进行了优化。优化结果表明,当尺寸在1.8cm至2.2cm之间时,1.8cm的厚度最好。最大接触应力、最大剪切应力和温度分别降低了387.5MPa、110.55MPa和10.11℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cemented Carbide Layer Thickness Optimization of Carbide Anvil Based on Thermodynamic Coupling
This paper presents cemented carbide layer thickness optimization of a carbide anvil based on thermodynamic coupling analysis. In our method, the established carbide anvil system through SolidWorks is firstly imported into the finite element software. The temperature field and thermal-mechanical coupling field of the carbide anvil system are analyzed. From the simulation results, it can be found that the contact stress of steel ring under temperature load is increased by 17.9% compared with that without temperature load. Thus, the service life of carbide anvil under temperature load is lower than that without temperature load. In addition, the four edges of anvil are prone to fatigue cracks due to the phenomenon of shear stress concentration. This is consistent with the actual crack location of cemented carbide anvil, which verifies the accuracy and rationality of thermal-mechanical coupling simulation. The thickness of cemented carbide layer is optimized based on thermodynamic coupling. The optimization results show that the thickness of 1.8cm is the best when size ranges from 1.8cm to 2.2cm. The maximum contact stress, the maximum shear stress, the temperature are all reduced by 387.5MPa, 110.55MPa, and 10.11℃, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
期刊最新文献
Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances Model Updating Based on Bayesian Theory and Improved Objective Function Design and FEM Analysis of Plastic Parts of a Tie-Rod Composite Hydraulic Cylinder Real-Time Energy Consumption Sensing System in SMT Intelligent Workshop Research on Bionic Hierarchical Optimization of Wing Based on PLSR and PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1