生物自我复制的量子态场景

R. Englman
{"title":"生物自我复制的量子态场景","authors":"R. Englman","doi":"10.4236/OJBIPHY.2021.112005","DOIUrl":null,"url":null,"abstract":"With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"159-176"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Quantum State Scenario for Biological Self-Replication\",\"authors\":\"R. Englman\",\"doi\":\"10.4236/OJBIPHY.2021.112005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.\",\"PeriodicalId\":59528,\"journal\":{\"name\":\"生物物理学期刊(英文)\",\"volume\":\"11 1\",\"pages\":\"159-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJBIPHY.2021.112005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJBIPHY.2021.112005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于自复制(SR,生命系统的标志)是一个受热力学定律约束的非平衡过程的普遍概念,一种互补的方法推导出了由哈密顿量产生的低能量子态,该哈密顿量似乎是生物系统特有的,因为它包含一些强结合项。结合吸引模板(T)和反应物的性质以形成复制物(R)。从该理论中得出的SR的标准是,T-R和热浴的运动度之间的二阶(双线性)相互作用项负支配线性自能项,从而在T和R的属性之间提供了绑定。形式主义(让人想起超交换的Kramers-Anderson机制)来自第一原理,但这取决于通过在相互作用的量子位上建模T、R和bath变量以及通过将吸引力凝聚成单个(控制)参数来进行大幅简化。该发展依赖于进一步简化的特征,如随机相位近似和有效哈密顿形式。复制的熵平衡被认为存在于遥远的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Quantum State Scenario for Biological Self-Replication
With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
128
期刊最新文献
Subacute Hyperthyroidism Induced by Treatment with Lithium Salts In Silico Evaluation of the Potential Interference of Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376 in the Binding of SARS-CoV-2 Spike Protein to Human Nanobody Nb20 Contribution of Scintigraphy in the Assessment of Extension of Osteophilic Cancers in Senegal from 2018 to 2021 Understanding Model Independent Genetic Mutations through Trends in Increase in Entropy NLR’s Analogs with Young Blood Cells in Monitoring of Toxicity of Long-Term Preventing Immunosuppression in the Liver Transplant’s Recipients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1