{"title":"存在变质效应的易腐产品的启发式动力学方法","authors":"Raghad O. Bahebshi, A. Almaktoom","doi":"10.1051/SMDO/2019012","DOIUrl":null,"url":null,"abstract":"Joining warehouses and suppliers facilities to deliver the finished product to the end customer is a complex process that requires extensive consideration. The resulting chain is an integration of such entities as the supplier, manufacturer, distributor, warehouse, retailer, and end customer. A perishable product is any product that can rot, spoil, or deteriorate rapidly and, soon after manufacture, may become unusable or obsolete. Perishable products thus have special nutritional characteristics that necessitate care and unique treatment for them. Such products can be anything that becomes outdated a short time after production or harvest, such as fruits, vegetables, meat, certain drinks, blood, and pharmaceuticals. The objective of this study is to find the best heuristics for distributing multiple perishable products as early as possible to maximize profit. Case studies involving featuring perishable products at different rates of degradation with multiple retailers and limited transportation capacity were carried out to demonstrate the effectiveness of the proposed method.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/SMDO/2019012","citationCount":"1","resultStr":"{\"title\":\"Heuristic dynamic approach to perishable products in presence of deterioration effect\",\"authors\":\"Raghad O. Bahebshi, A. Almaktoom\",\"doi\":\"10.1051/SMDO/2019012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joining warehouses and suppliers facilities to deliver the finished product to the end customer is a complex process that requires extensive consideration. The resulting chain is an integration of such entities as the supplier, manufacturer, distributor, warehouse, retailer, and end customer. A perishable product is any product that can rot, spoil, or deteriorate rapidly and, soon after manufacture, may become unusable or obsolete. Perishable products thus have special nutritional characteristics that necessitate care and unique treatment for them. Such products can be anything that becomes outdated a short time after production or harvest, such as fruits, vegetables, meat, certain drinks, blood, and pharmaceuticals. The objective of this study is to find the best heuristics for distributing multiple perishable products as early as possible to maximize profit. Case studies involving featuring perishable products at different rates of degradation with multiple retailers and limited transportation capacity were carried out to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/SMDO/2019012\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/SMDO/2019012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/SMDO/2019012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Heuristic dynamic approach to perishable products in presence of deterioration effect
Joining warehouses and suppliers facilities to deliver the finished product to the end customer is a complex process that requires extensive consideration. The resulting chain is an integration of such entities as the supplier, manufacturer, distributor, warehouse, retailer, and end customer. A perishable product is any product that can rot, spoil, or deteriorate rapidly and, soon after manufacture, may become unusable or obsolete. Perishable products thus have special nutritional characteristics that necessitate care and unique treatment for them. Such products can be anything that becomes outdated a short time after production or harvest, such as fruits, vegetables, meat, certain drinks, blood, and pharmaceuticals. The objective of this study is to find the best heuristics for distributing multiple perishable products as early as possible to maximize profit. Case studies involving featuring perishable products at different rates of degradation with multiple retailers and limited transportation capacity were carried out to demonstrate the effectiveness of the proposed method.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).