Lars Stemmerik, Kasper H. Blinkenberg, Ingrid P. Gianotten, Malcolm S.W. Hodgskiss, Aivo Lepland, Päärn Paiste, Israel Polonio, Nicholas M.W. Roberts, Niels Rameil
{"title":"挪威北海UTSIRA高地ZECHSTEIN碳酸盐岩的地层格架","authors":"Lars Stemmerik, Kasper H. Blinkenberg, Ingrid P. Gianotten, Malcolm S.W. Hodgskiss, Aivo Lepland, Päärn Paiste, Israel Polonio, Nicholas M.W. Roberts, Niels Rameil","doi":"10.1111/jpg.12838","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The preserved Zechstein succession on the Utsira High in the NE part of the Norwegian North Sea is 25-100 m thick and is dominated by shelf carbonates. Internal subdivision of the succession is based on the recognition of key surfaces in petrophysical logs and cores, and suggests that the carbonates mainly consist of ZS2 and ZS3 deposits and that younger ZS4 and ZS5 deposits are only locally preserved. The carbonates have undergone early, syn-depositional dolomitization followed by later dolomite recrystallization and calcitization. Calcitization, interpreted as dedolomitization, is restricted to the upper part of the ZS3 carbonate unit and based on U/Pb dating took place during the Triassic, with a later phase of recrystallization linked to mid-Jurassic uplift. Both dedolomitization and dolomite recrystallization relate to fresh-water infiltration with the resetting of δO<sup>18</sup> values prior to the Late Jurassic drowning of the Utsira High. The reservoir quality of the carbonates is directly linked to post-depositional meteoric diagenesis, and the best reservoir properties are recorded in intervals dominated by recrystallized dolomites in ZS2 and lower ZS3 carbonates. Dedolomitization significantly reduced porosity in the upper ZS3 carbonates.</p>\n </div>","PeriodicalId":16748,"journal":{"name":"Journal of Petroleum Geology","volume":"46 3","pages":"257-273"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpg.12838","citationCount":"0","resultStr":"{\"title\":\"STRATIGRAPHIC FRAMEWORK FOR ZECHSTEIN CARBONATES ON THE UTSIRA HIGH, NORWEGIAN NORTH SEA\",\"authors\":\"Lars Stemmerik, Kasper H. Blinkenberg, Ingrid P. Gianotten, Malcolm S.W. Hodgskiss, Aivo Lepland, Päärn Paiste, Israel Polonio, Nicholas M.W. Roberts, Niels Rameil\",\"doi\":\"10.1111/jpg.12838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The preserved Zechstein succession on the Utsira High in the NE part of the Norwegian North Sea is 25-100 m thick and is dominated by shelf carbonates. Internal subdivision of the succession is based on the recognition of key surfaces in petrophysical logs and cores, and suggests that the carbonates mainly consist of ZS2 and ZS3 deposits and that younger ZS4 and ZS5 deposits are only locally preserved. The carbonates have undergone early, syn-depositional dolomitization followed by later dolomite recrystallization and calcitization. Calcitization, interpreted as dedolomitization, is restricted to the upper part of the ZS3 carbonate unit and based on U/Pb dating took place during the Triassic, with a later phase of recrystallization linked to mid-Jurassic uplift. Both dedolomitization and dolomite recrystallization relate to fresh-water infiltration with the resetting of δO<sup>18</sup> values prior to the Late Jurassic drowning of the Utsira High. The reservoir quality of the carbonates is directly linked to post-depositional meteoric diagenesis, and the best reservoir properties are recorded in intervals dominated by recrystallized dolomites in ZS2 and lower ZS3 carbonates. Dedolomitization significantly reduced porosity in the upper ZS3 carbonates.</p>\\n </div>\",\"PeriodicalId\":16748,\"journal\":{\"name\":\"Journal of Petroleum Geology\",\"volume\":\"46 3\",\"pages\":\"257-273\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpg.12838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12838\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12838","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
STRATIGRAPHIC FRAMEWORK FOR ZECHSTEIN CARBONATES ON THE UTSIRA HIGH, NORWEGIAN NORTH SEA
The preserved Zechstein succession on the Utsira High in the NE part of the Norwegian North Sea is 25-100 m thick and is dominated by shelf carbonates. Internal subdivision of the succession is based on the recognition of key surfaces in petrophysical logs and cores, and suggests that the carbonates mainly consist of ZS2 and ZS3 deposits and that younger ZS4 and ZS5 deposits are only locally preserved. The carbonates have undergone early, syn-depositional dolomitization followed by later dolomite recrystallization and calcitization. Calcitization, interpreted as dedolomitization, is restricted to the upper part of the ZS3 carbonate unit and based on U/Pb dating took place during the Triassic, with a later phase of recrystallization linked to mid-Jurassic uplift. Both dedolomitization and dolomite recrystallization relate to fresh-water infiltration with the resetting of δO18 values prior to the Late Jurassic drowning of the Utsira High. The reservoir quality of the carbonates is directly linked to post-depositional meteoric diagenesis, and the best reservoir properties are recorded in intervals dominated by recrystallized dolomites in ZS2 and lower ZS3 carbonates. Dedolomitization significantly reduced porosity in the upper ZS3 carbonates.
期刊介绍:
Journal of Petroleum Geology is a quarterly journal devoted to the geology of oil and natural gas. Editorial preference is given to original papers on oilfield regions of the world outside North America and on topics of general application in petroleum exploration and development operations, including geochemical and geophysical studies, basin modelling and reservoir evaluation.