{"title":"行星能量转换的生物经济学——一个理论注释","authors":"Topher L. McDougal","doi":"10.15355/epsj.17.2.5","DOIUrl":null,"url":null,"abstract":"Evidence is mounting that unprecedented economic growth experienced by human societies over the past two centuries has induced a state of crisis for the Earth’s ecological systems—a crisis that threatens human society’s existence and heightens the risk of violent conflict. This article presents a simplified model of bioenergetic evolution on a planetary level. It examines human energy exploitation based on three strategies vis-à-vis the natural world: (1) predation, (2) competition, and, more cursorily, (3) mutualism. Predation involves the capture of energy pre-processed by the biotic community (living organisms sharing a common environment). Competition involves appropriating lands to capture solar-generated energy, edging the biotic community out. Mutualism involves engaging the biotic community in a mutualistic effort to harvest energy (and discard energy waste in the form of heat) outside of the planetary system. The model implies that, theoretically, substantial government investment in Earth-based solar generation may be required to effect a planetary energy transition to avert ecological collapse. The model suggests that this transition is not likely to happen automatically as a function of substitution by individual economic actors prior to ecological collapse; rather, it requires top-down coercive and/or incentive measures applied by government.","PeriodicalId":43334,"journal":{"name":"Economics of Peace and Security Journal","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The bioeconomics of planetary energy transitions—a theoretical note\",\"authors\":\"Topher L. McDougal\",\"doi\":\"10.15355/epsj.17.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evidence is mounting that unprecedented economic growth experienced by human societies over the past two centuries has induced a state of crisis for the Earth’s ecological systems—a crisis that threatens human society’s existence and heightens the risk of violent conflict. This article presents a simplified model of bioenergetic evolution on a planetary level. It examines human energy exploitation based on three strategies vis-à-vis the natural world: (1) predation, (2) competition, and, more cursorily, (3) mutualism. Predation involves the capture of energy pre-processed by the biotic community (living organisms sharing a common environment). Competition involves appropriating lands to capture solar-generated energy, edging the biotic community out. Mutualism involves engaging the biotic community in a mutualistic effort to harvest energy (and discard energy waste in the form of heat) outside of the planetary system. The model implies that, theoretically, substantial government investment in Earth-based solar generation may be required to effect a planetary energy transition to avert ecological collapse. The model suggests that this transition is not likely to happen automatically as a function of substitution by individual economic actors prior to ecological collapse; rather, it requires top-down coercive and/or incentive measures applied by government.\",\"PeriodicalId\":43334,\"journal\":{\"name\":\"Economics of Peace and Security Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics of Peace and Security Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15355/epsj.17.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics of Peace and Security Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15355/epsj.17.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
The bioeconomics of planetary energy transitions—a theoretical note
Evidence is mounting that unprecedented economic growth experienced by human societies over the past two centuries has induced a state of crisis for the Earth’s ecological systems—a crisis that threatens human society’s existence and heightens the risk of violent conflict. This article presents a simplified model of bioenergetic evolution on a planetary level. It examines human energy exploitation based on three strategies vis-à-vis the natural world: (1) predation, (2) competition, and, more cursorily, (3) mutualism. Predation involves the capture of energy pre-processed by the biotic community (living organisms sharing a common environment). Competition involves appropriating lands to capture solar-generated energy, edging the biotic community out. Mutualism involves engaging the biotic community in a mutualistic effort to harvest energy (and discard energy waste in the form of heat) outside of the planetary system. The model implies that, theoretically, substantial government investment in Earth-based solar generation may be required to effect a planetary energy transition to avert ecological collapse. The model suggests that this transition is not likely to happen automatically as a function of substitution by individual economic actors prior to ecological collapse; rather, it requires top-down coercive and/or incentive measures applied by government.