Charlotte L. Briddon, Suzanne McGowan, Sarah E. Metcalfe, Virginia Panizzo, Jack Lacey, Stefan Engels, Melanie Leng, Keely Mills, Muhammad Shafiq, Mushrifah Idris
{"title":"马来西亚洪水脉冲湿地沉积物岩心中的硅藻记录了过去150年来对人类影响和水文气候的强烈响应","authors":"Charlotte L. Briddon, Suzanne McGowan, Sarah E. Metcalfe, Virginia Panizzo, Jack Lacey, Stefan Engels, Melanie Leng, Keely Mills, Muhammad Shafiq, Mushrifah Idris","doi":"10.1002/geo2.90","DOIUrl":null,"url":null,"abstract":"<p>Rapid development and climate change in southeast Asia is placing unprecedented pressures on freshwater ecosystems, but long term records of the ecological consequences are rare. Here we examine one basin of Tasik Chini (Malaysia), a UNESCO-designated flood pulse wetland, where human disturbances (dam installation, iron ore mining, oil palm and rubber cultivation) have escalated since the 1980s. Diatom analysis and organic matter geochemistry (δ<sup>13</sup>C<sub>org</sub> and C/N ratios) were applied to a sediment sequence to infer ecological changes in the basin since <i>c.</i> 1900 CE. As the Tasik Chini wetland is a rare ecosystem with an unknown diatom ecology, contemporary diatom habitats (plant surfaces, mud surfaces, rocks, plankton) were sampled from across the lake to help interpret the sedimentary record. Habitat specificity of diatoms was not strongly defined and, although planktonic and benthic groupings were distinctive, there was no difference in assemblages among the benthic habitat surfaces. An increase in the proportion of benthic diatom taxa suggests that a substantial decrease in water level occurred between <i>c.</i> 1938 and 1995 CE, initiated by a decline in rainfall (supported by regional meteorological data), which increased the hydrological isolation of the sub-basin. Changes in the diatom assemblages were most marked after 1995 CE when the Chini dam was installed. After this time both δ<sup>13</sup>C<sub>org</sub> and C/N decreased, suggesting an increase in autochthonous production relative to allochthonous river flood pulse inputs. Oil palm plantations and mining continued to expand after <i>c.</i> 1995 CE and we speculate that inputs of pollutants from these activities may have contributed to the marked ecological change. Together, our work shows that this sub-basin of Tasik Chini has been particularly sensitive to, and impacted by, a combination of human and climatically induced changes due to its hydrologically isolated position.</p>","PeriodicalId":44089,"journal":{"name":"Geo-Geography and Environment","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/geo2.90","citationCount":"5","resultStr":"{\"title\":\"Diatoms in a sediment core from a flood pulse wetland in Malaysia record strong responses to human impacts and hydro-climate over the past 150 years\",\"authors\":\"Charlotte L. Briddon, Suzanne McGowan, Sarah E. Metcalfe, Virginia Panizzo, Jack Lacey, Stefan Engels, Melanie Leng, Keely Mills, Muhammad Shafiq, Mushrifah Idris\",\"doi\":\"10.1002/geo2.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid development and climate change in southeast Asia is placing unprecedented pressures on freshwater ecosystems, but long term records of the ecological consequences are rare. Here we examine one basin of Tasik Chini (Malaysia), a UNESCO-designated flood pulse wetland, where human disturbances (dam installation, iron ore mining, oil palm and rubber cultivation) have escalated since the 1980s. Diatom analysis and organic matter geochemistry (δ<sup>13</sup>C<sub>org</sub> and C/N ratios) were applied to a sediment sequence to infer ecological changes in the basin since <i>c.</i> 1900 CE. As the Tasik Chini wetland is a rare ecosystem with an unknown diatom ecology, contemporary diatom habitats (plant surfaces, mud surfaces, rocks, plankton) were sampled from across the lake to help interpret the sedimentary record. Habitat specificity of diatoms was not strongly defined and, although planktonic and benthic groupings were distinctive, there was no difference in assemblages among the benthic habitat surfaces. An increase in the proportion of benthic diatom taxa suggests that a substantial decrease in water level occurred between <i>c.</i> 1938 and 1995 CE, initiated by a decline in rainfall (supported by regional meteorological data), which increased the hydrological isolation of the sub-basin. Changes in the diatom assemblages were most marked after 1995 CE when the Chini dam was installed. After this time both δ<sup>13</sup>C<sub>org</sub> and C/N decreased, suggesting an increase in autochthonous production relative to allochthonous river flood pulse inputs. Oil palm plantations and mining continued to expand after <i>c.</i> 1995 CE and we speculate that inputs of pollutants from these activities may have contributed to the marked ecological change. Together, our work shows that this sub-basin of Tasik Chini has been particularly sensitive to, and impacted by, a combination of human and climatically induced changes due to its hydrologically isolated position.</p>\",\"PeriodicalId\":44089,\"journal\":{\"name\":\"Geo-Geography and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/geo2.90\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geo-Geography and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/geo2.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geo-Geography and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/geo2.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Diatoms in a sediment core from a flood pulse wetland in Malaysia record strong responses to human impacts and hydro-climate over the past 150 years
Rapid development and climate change in southeast Asia is placing unprecedented pressures on freshwater ecosystems, but long term records of the ecological consequences are rare. Here we examine one basin of Tasik Chini (Malaysia), a UNESCO-designated flood pulse wetland, where human disturbances (dam installation, iron ore mining, oil palm and rubber cultivation) have escalated since the 1980s. Diatom analysis and organic matter geochemistry (δ13Corg and C/N ratios) were applied to a sediment sequence to infer ecological changes in the basin since c. 1900 CE. As the Tasik Chini wetland is a rare ecosystem with an unknown diatom ecology, contemporary diatom habitats (plant surfaces, mud surfaces, rocks, plankton) were sampled from across the lake to help interpret the sedimentary record. Habitat specificity of diatoms was not strongly defined and, although planktonic and benthic groupings were distinctive, there was no difference in assemblages among the benthic habitat surfaces. An increase in the proportion of benthic diatom taxa suggests that a substantial decrease in water level occurred between c. 1938 and 1995 CE, initiated by a decline in rainfall (supported by regional meteorological data), which increased the hydrological isolation of the sub-basin. Changes in the diatom assemblages were most marked after 1995 CE when the Chini dam was installed. After this time both δ13Corg and C/N decreased, suggesting an increase in autochthonous production relative to allochthonous river flood pulse inputs. Oil palm plantations and mining continued to expand after c. 1995 CE and we speculate that inputs of pollutants from these activities may have contributed to the marked ecological change. Together, our work shows that this sub-basin of Tasik Chini has been particularly sensitive to, and impacted by, a combination of human and climatically induced changes due to its hydrologically isolated position.
期刊介绍:
Geo is a fully open access international journal publishing original articles from across the spectrum of geographical and environmental research. Geo welcomes submissions which make a significant contribution to one or more of the journal’s aims. These are to: • encompass the breadth of geographical, environmental and related research, based on original scholarship in the sciences, social sciences and humanities; • bring new understanding to and enhance communication between geographical research agendas, including human-environment interactions, global North-South relations and academic-policy exchange; • advance spatial research and address the importance of geographical enquiry to the understanding of, and action about, contemporary issues; • foster methodological development, including collaborative forms of knowledge production, interdisciplinary approaches and the innovative use of quantitative and/or qualitative data sets; • publish research articles, review papers, data and digital humanities papers, and commentaries which are of international significance.