彩色特征空间信息提取方法综述

Sarmad T. Abdul-Samad
{"title":"彩色特征空间信息提取方法综述","authors":"Sarmad T. Abdul-Samad","doi":"10.25195/ijci.v45i1.45","DOIUrl":null,"url":null,"abstract":"Inn then last two decades the Content Based Image Retrieval (CBIR) considered as one of the topic of interest for theresearchers. It depending one analysis of the image’s visual content which can be done by extracting the color, texture and shapefeatures. Therefore, feature extraction is one of the important steps in CBIR system for representing the image completely. Color featureis the most widely used and more reliable feature among the image visual features. This paper reviews different methods, namely LocalColor Histogram, Color Correlogram, Row sum and Column sum and Colors Coherences Vectors were used to extract colors featurestaking in consideration the spatial information of the image.","PeriodicalId":53384,"journal":{"name":"Iraqi Journal for Computers and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COLOR FEATURE WITH SPATIAL INFORMATION EXTRACTION METHODS FOR CBIR: A REVIEW\",\"authors\":\"Sarmad T. Abdul-Samad\",\"doi\":\"10.25195/ijci.v45i1.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inn then last two decades the Content Based Image Retrieval (CBIR) considered as one of the topic of interest for theresearchers. It depending one analysis of the image’s visual content which can be done by extracting the color, texture and shapefeatures. Therefore, feature extraction is one of the important steps in CBIR system for representing the image completely. Color featureis the most widely used and more reliable feature among the image visual features. This paper reviews different methods, namely LocalColor Histogram, Color Correlogram, Row sum and Column sum and Colors Coherences Vectors were used to extract colors featurestaking in consideration the spatial information of the image.\",\"PeriodicalId\":53384,\"journal\":{\"name\":\"Iraqi Journal for Computers and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Computers and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25195/ijci.v45i1.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computers and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25195/ijci.v45i1.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近二十年来,基于内容的图像检索(CBIR)一直是研究人员感兴趣的课题之一。它依赖于对图像视觉内容的分析,可以通过提取颜色、纹理和形状特征来完成。因此,为了完整地表示图像,特征提取是CBIR系统的重要步骤之一。颜色特征是图像视觉特征中应用最广泛、最可靠的特征。本文综述了在考虑图像空间信息的情况下,利用局部颜色直方图、颜色相关图、行和列和和颜色相干向量提取颜色特征的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COLOR FEATURE WITH SPATIAL INFORMATION EXTRACTION METHODS FOR CBIR: A REVIEW
Inn then last two decades the Content Based Image Retrieval (CBIR) considered as one of the topic of interest for theresearchers. It depending one analysis of the image’s visual content which can be done by extracting the color, texture and shapefeatures. Therefore, feature extraction is one of the important steps in CBIR system for representing the image completely. Color featureis the most widely used and more reliable feature among the image visual features. This paper reviews different methods, namely LocalColor Histogram, Color Correlogram, Row sum and Column sum and Colors Coherences Vectors were used to extract colors featurestaking in consideration the spatial information of the image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Credit Fraud Recognition Based on Performance Evaluation of Deep Learning Algorithm COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS Evaluation of Image Cryptography by Using Secret Session Key and SF Algorithm EDIBLE FISH IDENTIFICATION BASED ON MACHINE LEARNING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1