Vy Nguyen, D. P. Tran, T. Nguyen, K. Nguyen, H. Le
{"title":"在无溶剂和过渡金属的条件下,通过t- buna介导2-氨基苯酰胺和苯甲醇的氧化缩合,高效、绿色地合成2-苯基喹唑啉-4(3H)- 1","authors":"Vy Nguyen, D. P. Tran, T. Nguyen, K. Nguyen, H. Le","doi":"10.1515/gps-2022-8148","DOIUrl":null,"url":null,"abstract":"Abstract Quinazolinone synthesis usually requires employing sensitive substrates, hazardous solvents, large excess oxidants, and expensive catalysts. In this study, an efficient and environmentally benign pathway was developed to synthesize 2-phenylquinazolin-4(3H)-one via oxidative coupling between commercially available and stable chemicals, including 2-aminobenzamide and benzyl alcohol without toxic oxidizing agents and transition-metal catalysts. A high yield of the desired product (up to 84%) was obtained at 120°C for 24 h in the presence of oxygen as a green oxidant and t-BuONa as a base. Importantly, the study scope was expanded toward successfully producing various 2-phenylquinazolin-4(3H)-one derivatives in moderate-to-good yields. Furthermore, control experiments proposed that the conversion involved the initial partial oxidation of benzyl alcohol to the benzaldehyde intermediate under basic conditions, followed by the condensation, intramolecular nucleophilic addition, and oxidative dehydrogenation to 2-phenylquinazolin-4(3H)-one.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient and green synthesis of 2-phenylquinazolin-4(3H)-ones via t-BuONa-mediated oxidative condensation of 2-aminobenzamides and benzyl alcohols under solvent- and transition metal-free conditions\",\"authors\":\"Vy Nguyen, D. P. Tran, T. Nguyen, K. Nguyen, H. Le\",\"doi\":\"10.1515/gps-2022-8148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quinazolinone synthesis usually requires employing sensitive substrates, hazardous solvents, large excess oxidants, and expensive catalysts. In this study, an efficient and environmentally benign pathway was developed to synthesize 2-phenylquinazolin-4(3H)-one via oxidative coupling between commercially available and stable chemicals, including 2-aminobenzamide and benzyl alcohol without toxic oxidizing agents and transition-metal catalysts. A high yield of the desired product (up to 84%) was obtained at 120°C for 24 h in the presence of oxygen as a green oxidant and t-BuONa as a base. Importantly, the study scope was expanded toward successfully producing various 2-phenylquinazolin-4(3H)-one derivatives in moderate-to-good yields. Furthermore, control experiments proposed that the conversion involved the initial partial oxidation of benzyl alcohol to the benzaldehyde intermediate under basic conditions, followed by the condensation, intramolecular nucleophilic addition, and oxidative dehydrogenation to 2-phenylquinazolin-4(3H)-one.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8148\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An efficient and green synthesis of 2-phenylquinazolin-4(3H)-ones via t-BuONa-mediated oxidative condensation of 2-aminobenzamides and benzyl alcohols under solvent- and transition metal-free conditions
Abstract Quinazolinone synthesis usually requires employing sensitive substrates, hazardous solvents, large excess oxidants, and expensive catalysts. In this study, an efficient and environmentally benign pathway was developed to synthesize 2-phenylquinazolin-4(3H)-one via oxidative coupling between commercially available and stable chemicals, including 2-aminobenzamide and benzyl alcohol without toxic oxidizing agents and transition-metal catalysts. A high yield of the desired product (up to 84%) was obtained at 120°C for 24 h in the presence of oxygen as a green oxidant and t-BuONa as a base. Importantly, the study scope was expanded toward successfully producing various 2-phenylquinazolin-4(3H)-one derivatives in moderate-to-good yields. Furthermore, control experiments proposed that the conversion involved the initial partial oxidation of benzyl alcohol to the benzaldehyde intermediate under basic conditions, followed by the condensation, intramolecular nucleophilic addition, and oxidative dehydrogenation to 2-phenylquinazolin-4(3H)-one.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.