Frederik van de Voort, Daniel Furness, Michael Viset
{"title":"使用定量傅里叶红外光谱测定在役润滑油的滴定可比BN结果","authors":"Frederik van de Voort, Daniel Furness, Michael Viset","doi":"10.1002/ls.1624","DOIUrl":null,"url":null,"abstract":"<p>A new stoichiometric FTIR Base Number (BN) method of significant utility and analytical benefit to the tribology sector has been developed, providing ASTM D4739-comparable BN results in lieu of titration in a fraction of the time. Thirty-six new/in-service oils analysed by both methods were linearly related with a between-method accuracy of ~±1.0 BN and a within-FTIR method reproducibility of ~±0.50 BN. Acid pK<sub>a</sub> differences and the comparative similarity of the FTIR results to HCl titration are discussed, including analytical benefits. It provides a rapid means of producing quality ASTM-comparable results, taking ~1 min/sample for spectral analysis versus 30–40 min for potentiometric titration. Method protocols are best suited to an open architecture FTIR accessory but can be readily adapted to flow cell equipped FTIRs. As structured, ASTM-like results are obtained rapidly with a major analytical environmental/maintenance footprint reduction, being ideally suited for in-service lubricant or research labs analysing 20–50 samples/day.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Titrimetric-comparable BN results determined for in-service lubricants using quantitative FTIR spectroscopy\",\"authors\":\"Frederik van de Voort, Daniel Furness, Michael Viset\",\"doi\":\"10.1002/ls.1624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new stoichiometric FTIR Base Number (BN) method of significant utility and analytical benefit to the tribology sector has been developed, providing ASTM D4739-comparable BN results in lieu of titration in a fraction of the time. Thirty-six new/in-service oils analysed by both methods were linearly related with a between-method accuracy of ~±1.0 BN and a within-FTIR method reproducibility of ~±0.50 BN. Acid pK<sub>a</sub> differences and the comparative similarity of the FTIR results to HCl titration are discussed, including analytical benefits. It provides a rapid means of producing quality ASTM-comparable results, taking ~1 min/sample for spectral analysis versus 30–40 min for potentiometric titration. Method protocols are best suited to an open architecture FTIR accessory but can be readily adapted to flow cell equipped FTIRs. As structured, ASTM-like results are obtained rapidly with a major analytical environmental/maintenance footprint reduction, being ideally suited for in-service lubricant or research labs analysing 20–50 samples/day.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1624\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Titrimetric-comparable BN results determined for in-service lubricants using quantitative FTIR spectroscopy
A new stoichiometric FTIR Base Number (BN) method of significant utility and analytical benefit to the tribology sector has been developed, providing ASTM D4739-comparable BN results in lieu of titration in a fraction of the time. Thirty-six new/in-service oils analysed by both methods were linearly related with a between-method accuracy of ~±1.0 BN and a within-FTIR method reproducibility of ~±0.50 BN. Acid pKa differences and the comparative similarity of the FTIR results to HCl titration are discussed, including analytical benefits. It provides a rapid means of producing quality ASTM-comparable results, taking ~1 min/sample for spectral analysis versus 30–40 min for potentiometric titration. Method protocols are best suited to an open architecture FTIR accessory but can be readily adapted to flow cell equipped FTIRs. As structured, ASTM-like results are obtained rapidly with a major analytical environmental/maintenance footprint reduction, being ideally suited for in-service lubricant or research labs analysing 20–50 samples/day.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.