提高两阶段、结果相关抽样研究的估计效率

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2022-12-19 DOI:10.1214/23-ejs2124
Menglu Che, Peisong Han, J. Lawless
{"title":"提高两阶段、结果相关抽样研究的估计效率","authors":"Menglu Che, Peisong Han, J. Lawless","doi":"10.1214/23-ejs2124","DOIUrl":null,"url":null,"abstract":"Two-phase outcome dependent sampling (ODS) is widely used in many fields, especially when certain covariates are expensive and/or difficult to measure. For two-phase ODS, the conditional maximum likelihood (CML) method is very attractive because it can handle zero Phase 2 selection probabilities and avoids modeling the covariate distribution. However, most existing CML-based methods use only the Phase 2 sample and thus may be less efficient than other methods. We propose a general empirical likelihood method that uses CML augmented with additional information in the whole Phase 1 sample to improve estimation efficiency. The proposed method maintains the ability to handle zero selection probabilities and avoids modeling the covariate distribution, but can lead to substantial efficiency gains over CML in the inexpensive covariates, or in the influential covariate when a surrogate is available, because of an effective use of the Phase 1 data. Simulations and a real data illustration using NHANES data are presented.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving estimation efficiency for two-phase, outcome-dependent sampling studies\",\"authors\":\"Menglu Che, Peisong Han, J. Lawless\",\"doi\":\"10.1214/23-ejs2124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-phase outcome dependent sampling (ODS) is widely used in many fields, especially when certain covariates are expensive and/or difficult to measure. For two-phase ODS, the conditional maximum likelihood (CML) method is very attractive because it can handle zero Phase 2 selection probabilities and avoids modeling the covariate distribution. However, most existing CML-based methods use only the Phase 2 sample and thus may be less efficient than other methods. We propose a general empirical likelihood method that uses CML augmented with additional information in the whole Phase 1 sample to improve estimation efficiency. The proposed method maintains the ability to handle zero selection probabilities and avoids modeling the covariate distribution, but can lead to substantial efficiency gains over CML in the inexpensive covariates, or in the influential covariate when a surrogate is available, because of an effective use of the Phase 1 data. Simulations and a real data illustration using NHANES data are presented.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2124\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2124","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

两阶段结果相关采样(ODS)在许多领域被广泛使用,尤其是当某些协变量昂贵和/或难以测量时。对于两相ODS,条件最大似然(CML)方法非常有吸引力,因为它可以处理零的第二阶段选择概率,并避免对协变量分布进行建模。然而,大多数现有的基于CML的方法仅使用阶段2样本,因此可能不如其他方法有效。我们提出了一种通用的经验似然方法,该方法使用在整个阶段1样本中增加额外信息的CML来提高估计效率。所提出的方法保持了处理零选择概率的能力,并避免了对协变量分布进行建模,但由于有效地使用了第1阶段数据,在廉价的协变量中,或在有替代项的情况下,在有影响的协变量上,可以显著提高CML的效率。给出了使用NHANES数据的模拟和实际数据说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving estimation efficiency for two-phase, outcome-dependent sampling studies
Two-phase outcome dependent sampling (ODS) is widely used in many fields, especially when certain covariates are expensive and/or difficult to measure. For two-phase ODS, the conditional maximum likelihood (CML) method is very attractive because it can handle zero Phase 2 selection probabilities and avoids modeling the covariate distribution. However, most existing CML-based methods use only the Phase 2 sample and thus may be less efficient than other methods. We propose a general empirical likelihood method that uses CML augmented with additional information in the whole Phase 1 sample to improve estimation efficiency. The proposed method maintains the ability to handle zero selection probabilities and avoids modeling the covariate distribution, but can lead to substantial efficiency gains over CML in the inexpensive covariates, or in the influential covariate when a surrogate is available, because of an effective use of the Phase 1 data. Simulations and a real data illustration using NHANES data are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Dimension-free bounds for sums of dependent matrices and operators with heavy-tailed distributions A tradeoff between false discovery and true positive proportions for sparse high-dimensional logistic regression A penalised bootstrap estimation procedure for the explained Gini coefficient Random permutations generated by delay models and estimation of delay distributions Regression analysis of partially linear transformed mean residual life models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1