A. Raju Kulkarni , G. La Rocca, L.L.M. Veldhuis, G. Eitelberg
{"title":"亚尺度飞行试验模型设计:发展、挑战和机遇","authors":"A. Raju Kulkarni , G. La Rocca, L.L.M. Veldhuis, G. Eitelberg","doi":"10.1016/j.paerosci.2021.100798","DOIUrl":null,"url":null,"abstract":"<div><p>Growing interest in unconventional aircraft designs coupled with miniaturization of electronics and advancements in manufacturing techniques have revived the interest in the use of Sub-scale Flight Testing (SFT) to study the flight behaviour of full-scale aircraft in the early stages of design process by means of free-flying sub-scale models. SFT is particularly useful in the study of unconventional aircraft configurations as their behaviour cannot be reliably predicted based on legacy aircraft designs. In this paper, we survey the evolution of various design approaches (from 1848 to 2021) used to ensure similitude between a sub-scale model and its full-scale counterpart, which is an essential requirement to effectively perform SFT. Next, we present an exhaustive list of existing sub-scale models used in SFT and analyse the key trends in their design approaches, test-objectives, and applications. From this review, we conclude that the state-of-the-art sub-scale model design methods available in literature have not been used extensively in practice. Furthermore, we argue that one sub-scale model is not sufficient to predict the complete flight behaviour of a full-scale aircraft, but a catalog of tailored sub-scale models is needed to predict full-scale behaviour. An introduction to the development of such a catalog is presented in this paper, but the development of a formal methodology remains an open challenge. Establishing an approach to develop and use a SFT catalog of models to predict full-scale aircraft behaviour will help engineers enhance confidence on their designs and make SFT a viable and attractive testing method in the early stages of design.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"130 ","pages":"Article 100798"},"PeriodicalIF":11.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042121000981/pdfft?md5=6c151113899c7fc0e6e808d7ff9a4ab3&pid=1-s2.0-S0376042121000981-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Sub-scale flight test model design: Developments, challenges and opportunities\",\"authors\":\"A. Raju Kulkarni , G. La Rocca, L.L.M. Veldhuis, G. Eitelberg\",\"doi\":\"10.1016/j.paerosci.2021.100798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Growing interest in unconventional aircraft designs coupled with miniaturization of electronics and advancements in manufacturing techniques have revived the interest in the use of Sub-scale Flight Testing (SFT) to study the flight behaviour of full-scale aircraft in the early stages of design process by means of free-flying sub-scale models. SFT is particularly useful in the study of unconventional aircraft configurations as their behaviour cannot be reliably predicted based on legacy aircraft designs. In this paper, we survey the evolution of various design approaches (from 1848 to 2021) used to ensure similitude between a sub-scale model and its full-scale counterpart, which is an essential requirement to effectively perform SFT. Next, we present an exhaustive list of existing sub-scale models used in SFT and analyse the key trends in their design approaches, test-objectives, and applications. From this review, we conclude that the state-of-the-art sub-scale model design methods available in literature have not been used extensively in practice. Furthermore, we argue that one sub-scale model is not sufficient to predict the complete flight behaviour of a full-scale aircraft, but a catalog of tailored sub-scale models is needed to predict full-scale behaviour. An introduction to the development of such a catalog is presented in this paper, but the development of a formal methodology remains an open challenge. Establishing an approach to develop and use a SFT catalog of models to predict full-scale aircraft behaviour will help engineers enhance confidence on their designs and make SFT a viable and attractive testing method in the early stages of design.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"130 \",\"pages\":\"Article 100798\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0376042121000981/pdfft?md5=6c151113899c7fc0e6e808d7ff9a4ab3&pid=1-s2.0-S0376042121000981-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042121000981\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042121000981","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Sub-scale flight test model design: Developments, challenges and opportunities
Growing interest in unconventional aircraft designs coupled with miniaturization of electronics and advancements in manufacturing techniques have revived the interest in the use of Sub-scale Flight Testing (SFT) to study the flight behaviour of full-scale aircraft in the early stages of design process by means of free-flying sub-scale models. SFT is particularly useful in the study of unconventional aircraft configurations as their behaviour cannot be reliably predicted based on legacy aircraft designs. In this paper, we survey the evolution of various design approaches (from 1848 to 2021) used to ensure similitude between a sub-scale model and its full-scale counterpart, which is an essential requirement to effectively perform SFT. Next, we present an exhaustive list of existing sub-scale models used in SFT and analyse the key trends in their design approaches, test-objectives, and applications. From this review, we conclude that the state-of-the-art sub-scale model design methods available in literature have not been used extensively in practice. Furthermore, we argue that one sub-scale model is not sufficient to predict the complete flight behaviour of a full-scale aircraft, but a catalog of tailored sub-scale models is needed to predict full-scale behaviour. An introduction to the development of such a catalog is presented in this paper, but the development of a formal methodology remains an open challenge. Establishing an approach to develop and use a SFT catalog of models to predict full-scale aircraft behaviour will help engineers enhance confidence on their designs and make SFT a viable and attractive testing method in the early stages of design.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.