Fu-Shyang Chang, G. Flowers, R. Dean, J. Suhling, J. Roberts
{"title":"微尺度声学封装的声衰减研究","authors":"Fu-Shyang Chang, G. Flowers, R. Dean, J. Suhling, J. Roberts","doi":"10.20855/ijav.2020.25.21453","DOIUrl":null,"url":null,"abstract":"Certain microelectromechanical systems (MEMS), particularly MEMS gyroscopes, are notably susceptible to high power acoustic noise, especially when the noise is at or near its resonant frequency. A micro scale open-through dual expansion chamber (ODEC) array package with a continuous transmission loss (TL) in a wide frequency range is proposed to diminish the impact of such noise on the performance of MEMS gyroscopes. An analytical model based on planar wave propagation in stationary air has been developed with the consideration of the thermo-acoustic effect near the inner rigid boundary regarding small scale. Experiments with ODEC groups and control groups (non-ODEC) samples have been conducted to verify the model and compare the performances. The ODECs perform in the manner of low-pass filters and both the experimental and the analytical results exhibit greater TL in the higher frequency ranges as compared to the corresponding control samples. In addition, the resonance effects of the ODEC itself are also experimentally observed to be a key factor in influencing the TL.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"25 1","pages":"133-140"},"PeriodicalIF":0.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound Attenuation Study of Micro-Scale Acoustic Package\",\"authors\":\"Fu-Shyang Chang, G. Flowers, R. Dean, J. Suhling, J. Roberts\",\"doi\":\"10.20855/ijav.2020.25.21453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certain microelectromechanical systems (MEMS), particularly MEMS gyroscopes, are notably susceptible to high power acoustic noise, especially when the noise is at or near its resonant frequency. A micro scale open-through dual expansion chamber (ODEC) array package with a continuous transmission loss (TL) in a wide frequency range is proposed to diminish the impact of such noise on the performance of MEMS gyroscopes. An analytical model based on planar wave propagation in stationary air has been developed with the consideration of the thermo-acoustic effect near the inner rigid boundary regarding small scale. Experiments with ODEC groups and control groups (non-ODEC) samples have been conducted to verify the model and compare the performances. The ODECs perform in the manner of low-pass filters and both the experimental and the analytical results exhibit greater TL in the higher frequency ranges as compared to the corresponding control samples. In addition, the resonance effects of the ODEC itself are also experimentally observed to be a key factor in influencing the TL.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"25 1\",\"pages\":\"133-140\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2020.25.21453\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.21453","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Sound Attenuation Study of Micro-Scale Acoustic Package
Certain microelectromechanical systems (MEMS), particularly MEMS gyroscopes, are notably susceptible to high power acoustic noise, especially when the noise is at or near its resonant frequency. A micro scale open-through dual expansion chamber (ODEC) array package with a continuous transmission loss (TL) in a wide frequency range is proposed to diminish the impact of such noise on the performance of MEMS gyroscopes. An analytical model based on planar wave propagation in stationary air has been developed with the consideration of the thermo-acoustic effect near the inner rigid boundary regarding small scale. Experiments with ODEC groups and control groups (non-ODEC) samples have been conducted to verify the model and compare the performances. The ODECs perform in the manner of low-pass filters and both the experimental and the analytical results exhibit greater TL in the higher frequency ranges as compared to the corresponding control samples. In addition, the resonance effects of the ODEC itself are also experimentally observed to be a key factor in influencing the TL.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.