原油自乳化对低渗透油藏吞吐后采收率的影响

2区 工程技术 Q1 Earth and Planetary Sciences Journal of Petroleum Science and Engineering Pub Date : 2023-01-01 DOI:10.1016/j.petrol.2022.111201
Leilei Jia, Liguo Zhong, Hongkui Ge, Yinghao Shen
{"title":"原油自乳化对低渗透油藏吞吐后采收率的影响","authors":"Leilei Jia,&nbsp;Liguo Zhong,&nbsp;Hongkui Ge,&nbsp;Yinghao Shen","doi":"10.1016/j.petrol.2022.111201","DOIUrl":null,"url":null,"abstract":"<div><p><span>The emulsification phenomenon exists during crude oil exploitation in the Jimsar area of Xinjiang. In the field, the emulsification mechanism and its influence on production are unclear. To clarify the self-emulsifying law of crude oil and its influence on production during soaking, this study carried out microscopic visualization displacement experiments, spontaneous </span>imbibition<span><span> displacement, and oil–water displacement experiments. Results show that oil–water contact time and water phase type affect the size of the emulsified layer between crude oil and water phase. The oil–water distribution type affects the formation mode of crude oil emulsification. After the opening of the water phase channel, crude oil mainly migrates in the form of a water-in-oil emulsion. The crude oil attached to the pore wall and stuck in the pore throats is the main source of the dispersed phase in the emulsion. When crude oil moves through pores, the high-curvature boundary changes the interfacial tension and </span>capillary force<span>. Thus, this case makes the crude oil easily stuck to form small oil droplets and promotes the dispersion of crude oil to form an emulsion. In the tight core, a decrease in the spontaneous imbibition ability was attained by increasing nano-emulsion concentration. However, the oil displacement effect of 0.3% nano-emulsion is better than that of the 0.6% concentration. Therefore, ensuring a certain spontaneous imbibition ability and a certain displacement efficiency is necessary. Oil recovery can be enhanced to a certain extent after self-emulsification in the pores of Jimsar crude oil. When oil displacement depends on the capillary force or driving pressure difference, the oil–water interfacial tension is not the lower, the better, and a suitable range exists. The suitable oil–water interfacial tension in this region is between 0.1 and 1 mN/m.</span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111201"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of crude oil self-emulsification on the recovery of low permeability reservoir after well soaking\",\"authors\":\"Leilei Jia,&nbsp;Liguo Zhong,&nbsp;Hongkui Ge,&nbsp;Yinghao Shen\",\"doi\":\"10.1016/j.petrol.2022.111201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The emulsification phenomenon exists during crude oil exploitation in the Jimsar area of Xinjiang. In the field, the emulsification mechanism and its influence on production are unclear. To clarify the self-emulsifying law of crude oil and its influence on production during soaking, this study carried out microscopic visualization displacement experiments, spontaneous </span>imbibition<span><span> displacement, and oil–water displacement experiments. Results show that oil–water contact time and water phase type affect the size of the emulsified layer between crude oil and water phase. The oil–water distribution type affects the formation mode of crude oil emulsification. After the opening of the water phase channel, crude oil mainly migrates in the form of a water-in-oil emulsion. The crude oil attached to the pore wall and stuck in the pore throats is the main source of the dispersed phase in the emulsion. When crude oil moves through pores, the high-curvature boundary changes the interfacial tension and </span>capillary force<span>. Thus, this case makes the crude oil easily stuck to form small oil droplets and promotes the dispersion of crude oil to form an emulsion. In the tight core, a decrease in the spontaneous imbibition ability was attained by increasing nano-emulsion concentration. However, the oil displacement effect of 0.3% nano-emulsion is better than that of the 0.6% concentration. Therefore, ensuring a certain spontaneous imbibition ability and a certain displacement efficiency is necessary. Oil recovery can be enhanced to a certain extent after self-emulsification in the pores of Jimsar crude oil. When oil displacement depends on the capillary force or driving pressure difference, the oil–water interfacial tension is not the lower, the better, and a suitable range exists. The suitable oil–water interfacial tension in this region is between 0.1 and 1 mN/m.</span></span></p></div>\",\"PeriodicalId\":16717,\"journal\":{\"name\":\"Journal of Petroleum Science and Engineering\",\"volume\":\"220 \",\"pages\":\"Article 111201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920410522010531\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010531","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

新疆吉木萨尔地区原油开采过程中存在乳化现象。在该领域,乳化机理及其对生产的影响尚不清楚。为了阐明原油在浸泡过程中的自乳化规律及其对产量的影响,本研究进行了微观可视化驱油实验、自发自吸驱油实验和油水驱油实验。结果表明,油水接触时间和水相类型影响原油和水相之间乳化层的大小。油水分布类型影响原油乳化的形成方式。水相通道打开后,原油主要以油包水乳液的形式迁移。附着在孔壁上并卡在孔喉中的原油是乳液中分散相的主要来源。当原油通过孔隙时,高曲率边界改变了界面张力和毛细管力。因此,这种情况使得原油容易粘附以形成小油滴,并促进原油的分散以形成乳液。在致密岩心中,通过增加纳米乳液的浓度来降低自吸能力。但0.3%纳米乳液的驱油效果要好于0.6%浓度的纳米乳液。因此,保证一定的自吸能力和一定的驱油效率是必要的。吉木萨尔原油在孔隙中自乳化后,可在一定程度上提高采收率。当驱油取决于毛细管力或驱动压差时,油水界面张力不是越低越好,并且存在一个合适的范围。该区域合适的油水界面张力在0.1至1 mN/m之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of crude oil self-emulsification on the recovery of low permeability reservoir after well soaking

The emulsification phenomenon exists during crude oil exploitation in the Jimsar area of Xinjiang. In the field, the emulsification mechanism and its influence on production are unclear. To clarify the self-emulsifying law of crude oil and its influence on production during soaking, this study carried out microscopic visualization displacement experiments, spontaneous imbibition displacement, and oil–water displacement experiments. Results show that oil–water contact time and water phase type affect the size of the emulsified layer between crude oil and water phase. The oil–water distribution type affects the formation mode of crude oil emulsification. After the opening of the water phase channel, crude oil mainly migrates in the form of a water-in-oil emulsion. The crude oil attached to the pore wall and stuck in the pore throats is the main source of the dispersed phase in the emulsion. When crude oil moves through pores, the high-curvature boundary changes the interfacial tension and capillary force. Thus, this case makes the crude oil easily stuck to form small oil droplets and promotes the dispersion of crude oil to form an emulsion. In the tight core, a decrease in the spontaneous imbibition ability was attained by increasing nano-emulsion concentration. However, the oil displacement effect of 0.3% nano-emulsion is better than that of the 0.6% concentration. Therefore, ensuring a certain spontaneous imbibition ability and a certain displacement efficiency is necessary. Oil recovery can be enhanced to a certain extent after self-emulsification in the pores of Jimsar crude oil. When oil displacement depends on the capillary force or driving pressure difference, the oil–water interfacial tension is not the lower, the better, and a suitable range exists. The suitable oil–water interfacial tension in this region is between 0.1 and 1 mN/m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Petroleum Science and Engineering
Journal of Petroleum Science and Engineering 工程技术-地球科学综合
CiteScore
11.30
自引率
0.00%
发文量
1511
审稿时长
13.5 months
期刊介绍: The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.
期刊最新文献
Predictive Analytical Model for Hydrate Growth Initiation Point in Multiphase Pipeline System Optimization of the Oxidative Desulphurization of Residual Oil Using Hydrogen Peroxide Terpane Characterization of Crude Oils from Niger Delta, Nigeria: A Geochemical Appraisal Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1