Thana Thanayutsiri, Prasopchai Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, W. Laiwattanapaisal, T. Rojanarata
{"title":"微波辅助快速高效提取山参的研究。心材和随后合成的金纳米颗粒","authors":"Thana Thanayutsiri, Prasopchai Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, W. Laiwattanapaisal, T. Rojanarata","doi":"10.1515/gps-2022-8109","DOIUrl":null,"url":null,"abstract":"Abstract Since microwave (MW)-assisted synthesis of gold nanoparticles (AuNPs) using Caesalpinia sappan (CS) extract as both a reducing and stabilizing agent is currently unavailable, a MW-based synthesis protocol was investigated and presented for the first time in this work. In addition, to rapidly prepare the reactant for this purpose, the MW-assisted extraction of CS heartwood was studied. From the optimization experiments, it was found that the extraction using the MW irradiation at 300 W for 3 min produced the extract with high and reproducible brazilin content which could be readily used for the synthesis of AuNPs. Under the optimal synthesis conditions, roughly spherical CS-AuNPs with an average diameter size of 49.6 nm and acceptable 28-day stability were obtained within only 1 min. The resulting CS-AuNPs were capable of selective binding to Fe2+, Fe3+, and Al3+, leading to particle aggregation as well as noticeable change of color and shift of UV-Vis absorption maxima. From these results, CS-AuNPs could be fabricated via this fast, green, and efficient route. Furthermore, their potential application for colorimetric sensing of certain metal ions was preliminarily explored and proposed in this work.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rapid and efficient microwave-assisted extraction of Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold nanoparticles\",\"authors\":\"Thana Thanayutsiri, Prasopchai Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, W. Laiwattanapaisal, T. Rojanarata\",\"doi\":\"10.1515/gps-2022-8109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since microwave (MW)-assisted synthesis of gold nanoparticles (AuNPs) using Caesalpinia sappan (CS) extract as both a reducing and stabilizing agent is currently unavailable, a MW-based synthesis protocol was investigated and presented for the first time in this work. In addition, to rapidly prepare the reactant for this purpose, the MW-assisted extraction of CS heartwood was studied. From the optimization experiments, it was found that the extraction using the MW irradiation at 300 W for 3 min produced the extract with high and reproducible brazilin content which could be readily used for the synthesis of AuNPs. Under the optimal synthesis conditions, roughly spherical CS-AuNPs with an average diameter size of 49.6 nm and acceptable 28-day stability were obtained within only 1 min. The resulting CS-AuNPs were capable of selective binding to Fe2+, Fe3+, and Al3+, leading to particle aggregation as well as noticeable change of color and shift of UV-Vis absorption maxima. From these results, CS-AuNPs could be fabricated via this fast, green, and efficient route. Furthermore, their potential application for colorimetric sensing of certain metal ions was preliminarily explored and proposed in this work.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2022-8109\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid and efficient microwave-assisted extraction of Caesalpinia sappan Linn. heartwood and subsequent synthesis of gold nanoparticles
Abstract Since microwave (MW)-assisted synthesis of gold nanoparticles (AuNPs) using Caesalpinia sappan (CS) extract as both a reducing and stabilizing agent is currently unavailable, a MW-based synthesis protocol was investigated and presented for the first time in this work. In addition, to rapidly prepare the reactant for this purpose, the MW-assisted extraction of CS heartwood was studied. From the optimization experiments, it was found that the extraction using the MW irradiation at 300 W for 3 min produced the extract with high and reproducible brazilin content which could be readily used for the synthesis of AuNPs. Under the optimal synthesis conditions, roughly spherical CS-AuNPs with an average diameter size of 49.6 nm and acceptable 28-day stability were obtained within only 1 min. The resulting CS-AuNPs were capable of selective binding to Fe2+, Fe3+, and Al3+, leading to particle aggregation as well as noticeable change of color and shift of UV-Vis absorption maxima. From these results, CS-AuNPs could be fabricated via this fast, green, and efficient route. Furthermore, their potential application for colorimetric sensing of certain metal ions was preliminarily explored and proposed in this work.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.