{"title":"施肥和多效唑对矮牵牛可持续生产和产后表现的影响","authors":"Jiwoo Park, J. Faust","doi":"10.21273/horttech05086-22","DOIUrl":null,"url":null,"abstract":"This study examined the interaction between constant liquid fertilization (CLF) concentrations and plant growth regulator (PGR) application concentrations on petunia (Petunia ×hybrida) growth and flowering in the production and post-production environments. Paclobutrazol application is a common practice in bedding plant production to achieve a compact plant that increases greenhouse space-use efficiency, shipping density, and tolerance to physical handling stresses in the post-production environment. The objective of this research was to determine the best strategy for balancing CLF and PGR application concentration in the greenhouse environment so that growth and flowering can be maximized in the post-production environment. A two-factorial combination of four CLF concentrations [50, 100, 150, or 200 ppm nitrogen (N)] and four paclobutrazol drench concentrations (0, 5, 10, or 20 ppm) were provided to plants during the production phase, and plant growth and flowering were recorded in the production and post-production environments. From a sustainability perspective, the ideal PGR concentration was 5 ppm paclobutrazol, since this concentration resulted in the best combination of production and post-production characteristics and performance. At this PGR concentration, all plant growth and flowering measures increased as CLF increased from 50 to 200 ppm N; however, all CLF concentrations also produced commercially acceptable plants. Therefore, the ideal CLF concentration depends on the size of plant desired; that is, CLF concentrations as low as 50 to 100 ppm N can be provided depending on the market size requirements of the plants being grown. Based on our results, a combination of 50 ppm N CLF with 0 ppm paclobutrazol or 100 ppm N CLF with 5 ppm paclobutrazol both demonstrated adequate growth control during both production and post-production phases.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fertilization and Paclobutrazol Application for Sustainable Production and Post-production Performance of Petunia\",\"authors\":\"Jiwoo Park, J. Faust\",\"doi\":\"10.21273/horttech05086-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the interaction between constant liquid fertilization (CLF) concentrations and plant growth regulator (PGR) application concentrations on petunia (Petunia ×hybrida) growth and flowering in the production and post-production environments. Paclobutrazol application is a common practice in bedding plant production to achieve a compact plant that increases greenhouse space-use efficiency, shipping density, and tolerance to physical handling stresses in the post-production environment. The objective of this research was to determine the best strategy for balancing CLF and PGR application concentration in the greenhouse environment so that growth and flowering can be maximized in the post-production environment. A two-factorial combination of four CLF concentrations [50, 100, 150, or 200 ppm nitrogen (N)] and four paclobutrazol drench concentrations (0, 5, 10, or 20 ppm) were provided to plants during the production phase, and plant growth and flowering were recorded in the production and post-production environments. From a sustainability perspective, the ideal PGR concentration was 5 ppm paclobutrazol, since this concentration resulted in the best combination of production and post-production characteristics and performance. At this PGR concentration, all plant growth and flowering measures increased as CLF increased from 50 to 200 ppm N; however, all CLF concentrations also produced commercially acceptable plants. Therefore, the ideal CLF concentration depends on the size of plant desired; that is, CLF concentrations as low as 50 to 100 ppm N can be provided depending on the market size requirements of the plants being grown. Based on our results, a combination of 50 ppm N CLF with 0 ppm paclobutrazol or 100 ppm N CLF with 5 ppm paclobutrazol both demonstrated adequate growth control during both production and post-production phases.\",\"PeriodicalId\":13144,\"journal\":{\"name\":\"Horttechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horttechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/horttech05086-22\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horttechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/horttech05086-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
摘要
研究了恒定液体施肥(CLF)浓度和植物生长调节剂(PGR)浓度对矮牵牛(petunia ×hybrida)生长和开花在生产和生产后环境中的相互作用。多效唑应用于床上植物生产中是一种常见的做法,以实现紧凑的植物,增加温室空间利用效率,运输密度,以及对生产后环境中物理处理压力的耐受性。本研究的目的是确定温室环境中平衡CLF和PGR施用浓度的最佳策略,以便在后期环境中最大限度地促进生长和开花。在生产阶段向植物提供四种CLF浓度[50、100、150或200 ppm氮(N)]和四种多效唑淋水浓度(0、5、10或20 ppm)的双因子组合,并在生产和生产后环境中记录植物的生长和开花情况。从可持续发展的角度来看,理想的PGR浓度为5ppm多效唑,因为该浓度可以使生产和生产后的特性和性能得到最佳结合。在此浓度下,随着CLF从50 ppm N增加到200 ppm N,所有植物生长和开花指标均增加;然而,所有CLF浓度也产生了商业上可接受的植物。因此,理想的CLF浓度取决于所需植物的大小;也就是说,根据所种植植物的市场规模需求,可以提供低至50至100 ppm N的CLF浓度。根据我们的研究结果,50 ppm N - CLF与0 ppm多效唑或100 ppm N - CLF与5 ppm多效唑的组合在生产和生产后阶段都显示出足够的生长控制。
Fertilization and Paclobutrazol Application for Sustainable Production and Post-production Performance of Petunia
This study examined the interaction between constant liquid fertilization (CLF) concentrations and plant growth regulator (PGR) application concentrations on petunia (Petunia ×hybrida) growth and flowering in the production and post-production environments. Paclobutrazol application is a common practice in bedding plant production to achieve a compact plant that increases greenhouse space-use efficiency, shipping density, and tolerance to physical handling stresses in the post-production environment. The objective of this research was to determine the best strategy for balancing CLF and PGR application concentration in the greenhouse environment so that growth and flowering can be maximized in the post-production environment. A two-factorial combination of four CLF concentrations [50, 100, 150, or 200 ppm nitrogen (N)] and four paclobutrazol drench concentrations (0, 5, 10, or 20 ppm) were provided to plants during the production phase, and plant growth and flowering were recorded in the production and post-production environments. From a sustainability perspective, the ideal PGR concentration was 5 ppm paclobutrazol, since this concentration resulted in the best combination of production and post-production characteristics and performance. At this PGR concentration, all plant growth and flowering measures increased as CLF increased from 50 to 200 ppm N; however, all CLF concentrations also produced commercially acceptable plants. Therefore, the ideal CLF concentration depends on the size of plant desired; that is, CLF concentrations as low as 50 to 100 ppm N can be provided depending on the market size requirements of the plants being grown. Based on our results, a combination of 50 ppm N CLF with 0 ppm paclobutrazol or 100 ppm N CLF with 5 ppm paclobutrazol both demonstrated adequate growth control during both production and post-production phases.
期刊介绍:
HortTechnology serves as the primary outreach publication of the American Society for Horticultural Science. Its mission is to provide science-based information to professional horticulturists, practitioners, and educators; promote and encourage an interchange of ideas among scientists, educators, and professionals working in horticulture; and provide an opportunity for peer review of practical horticultural information.