Pub Date : 2024-06-01DOI: 10.21273/horttech05368-23
Ronda D. Conner Koski, James E. Klett, Daniel Burcham
Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.
{"title":"Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Three Cultivars of Ornamental Perennials","authors":"Ronda D. Conner Koski, James E. Klett, Daniel Burcham","doi":"10.21273/horttech05368-23","DOIUrl":"https://doi.org/10.21273/horttech05368-23","url":null,"abstract":"Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05403-24
Angela Karen Hirst, Sanzida Akhter Anee, Matthew Joseph Housley, Kuan Qin, R. Ferrarezi
Hydroponics is widely used in greenhouse and vertical farming production because these facilities can precisely control environmental conditions such as lighting, temperature, and vapor pressure deficit. However, the fertilizer solutions have a short life span, and they often do not have adequate microbial populations to enhance plant growth. Previous studies have shown the potential of beneficial microbes to promote plant production and alleviate abiotic and biotic stressors in the field, and studies on their use in controlled environments such as greenhouses and vertical farms are limited in the literature. In this study, we selected several plant growth promoting microbes (PGPMs) and tested their effects on alleviating salinity stress in ‘Rex’ lettuce (Lactuca sativa) and ‘Red Pac’ pak choi (Brassica chinensis) grown in deep water culture hydroponics. Our goal was to use one stressor, salinity, that induces profound symptoms in plant morphology. A three-cycle study was conducted using five PGPMs [Bacillus, Glomus, Lactobacillus, Trichoderma, and Bacillus/Pseudomonas/Trichoderma (B/P/T) mix] and two salinity levels [no salinity and salinity treatment, with 120 mM, 40 mM, and 80 mM sodium chloride (NaCl) solution used for the first, second, and third cycles, respectively]. We measured the effects of PGPMs and salinity on plant growth and quality and the solution pH and electrical conductivity (EC). Salinity stress decreased lettuce and pak choi leaf area and shoot fresh weight and increased plant leaf chlorophyll and anthocyanin contents with increased solution EC. Under high-salinity stress (120 mM NaCl), the addition of Trichoderma reduced pak choi leaf area and fresh weight but increased solution pH, whereas under low salinity stress (40 mM NaCl), Trichoderma increased pak choi leaf chlorophyll content. Under moderate-salinity stress (80 mM NaCl) condition, the addition of Glomus sp. increased lettuce fresh weight and leaf area, and B/P/T mix increased pak choi leaf area. In conclusion, using the selected PGPMs in low to moderate-salinity stress could increase lettuce and pak choi growth and quality parameters. These results have some practical applications in the future when more saline water is used for production.
{"title":"Selected Beneficial Microbes Alleviate Salinity Stress in Hydroponic Lettuce and Pak Choi","authors":"Angela Karen Hirst, Sanzida Akhter Anee, Matthew Joseph Housley, Kuan Qin, R. Ferrarezi","doi":"10.21273/horttech05403-24","DOIUrl":"https://doi.org/10.21273/horttech05403-24","url":null,"abstract":"Hydroponics is widely used in greenhouse and vertical farming production because these facilities can precisely control environmental conditions such as lighting, temperature, and vapor pressure deficit. However, the fertilizer solutions have a short life span, and they often do not have adequate microbial populations to enhance plant growth. Previous studies have shown the potential of beneficial microbes to promote plant production and alleviate abiotic and biotic stressors in the field, and studies on their use in controlled environments such as greenhouses and vertical farms are limited in the literature. In this study, we selected several plant growth promoting microbes (PGPMs) and tested their effects on alleviating salinity stress in ‘Rex’ lettuce (Lactuca sativa) and ‘Red Pac’ pak choi (Brassica chinensis) grown in deep water culture hydroponics. Our goal was to use one stressor, salinity, that induces profound symptoms in plant morphology. A three-cycle study was conducted using five PGPMs [Bacillus, Glomus, Lactobacillus, Trichoderma, and Bacillus/Pseudomonas/Trichoderma (B/P/T) mix] and two salinity levels [no salinity and salinity treatment, with 120 mM, 40 mM, and 80 mM sodium chloride (NaCl) solution used for the first, second, and third cycles, respectively]. We measured the effects of PGPMs and salinity on plant growth and quality and the solution pH and electrical conductivity (EC). Salinity stress decreased lettuce and pak choi leaf area and shoot fresh weight and increased plant leaf chlorophyll and anthocyanin contents with increased solution EC. Under high-salinity stress (120 mM NaCl), the addition of Trichoderma reduced pak choi leaf area and fresh weight but increased solution pH, whereas under low salinity stress (40 mM NaCl), Trichoderma increased pak choi leaf chlorophyll content. Under moderate-salinity stress (80 mM NaCl) condition, the addition of Glomus sp. increased lettuce fresh weight and leaf area, and B/P/T mix increased pak choi leaf area. In conclusion, using the selected PGPMs in low to moderate-salinity stress could increase lettuce and pak choi growth and quality parameters. These results have some practical applications in the future when more saline water is used for production.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05404-24
R. Sideman, Heather Bryant, Olivia Saunders
We grew eight cultivars of eggplant (Solanum melongena) over 2 years in four experiments conducted in high tunnels located in Durham, NH; North Haverhill, NH; and Ossipee, NH, USA. The marketable yields of eggplant harvested over 14 to 15 weeks ranged from 925 to 3269 g per plant (2.5–8.8 kg⋅m–2), depending on year and cultivar. Significant differences in marketable yield among cultivars were observed in three of the four experiments, but trends were not consistent. Parthenocarpic cultivars developed for greenhouse production, including Angela, Annina, Aretussa, Jaylo, and Michal, did not produce significantly greater yields than the cultivars developed for field production (Nadia, Traviata, and White Star). In two experiments, using a subset of cultivars, we explored the effects of training plants to four leaders compared with the standard practice of no pruning. Pruning treatment did not impact significantly the number or weight of marketable fruit, or the percentage of cull fruit, and there was no cultivar-by-pruning treatment interaction. In three separate experiments in Durham NH, USA, weight loss, browning, and softness were evaluated after 2 weeks of storage in one of three conditions: within the ideal range of temperatures (average of 50–64 °F), too warm (63–73 °F), and too cool (38–49 °F). Overall, responses to conditions that were warmer or cooler than ideal were as predicted, and weight loss, softness, and browning were all minimized when fruit were stored at 50 or 60 °F. We did, however, see some differences among cultivars in susceptibility to common postharvest storage problems. In conclusion, we found that cultivar choice can be important for high-tunnel eggplant producers, especially if postharvest storage conditions are not ideal. We also found that pruning and parthenocarpy did not enhance marketable yields, allowing growers to reduce labor and seed costs without impacting yield or fruit quality negatively.
{"title":"Yields, Postharvest Storage, and Response to Pruning of Eggplant Cultivars Grown in High Tunnels in New Hampshire, USA","authors":"R. Sideman, Heather Bryant, Olivia Saunders","doi":"10.21273/horttech05404-24","DOIUrl":"https://doi.org/10.21273/horttech05404-24","url":null,"abstract":"We grew eight cultivars of eggplant (Solanum melongena) over 2 years in four experiments conducted in high tunnels located in Durham, NH; North Haverhill, NH; and Ossipee, NH, USA. The marketable yields of eggplant harvested over 14 to 15 weeks ranged from 925 to 3269 g per plant (2.5–8.8 kg⋅m–2), depending on year and cultivar. Significant differences in marketable yield among cultivars were observed in three of the four experiments, but trends were not consistent. Parthenocarpic cultivars developed for greenhouse production, including Angela, Annina, Aretussa, Jaylo, and Michal, did not produce significantly greater yields than the cultivars developed for field production (Nadia, Traviata, and White Star). In two experiments, using a subset of cultivars, we explored the effects of training plants to four leaders compared with the standard practice of no pruning. Pruning treatment did not impact significantly the number or weight of marketable fruit, or the percentage of cull fruit, and there was no cultivar-by-pruning treatment interaction. In three separate experiments in Durham NH, USA, weight loss, browning, and softness were evaluated after 2 weeks of storage in one of three conditions: within the ideal range of temperatures (average of 50–64 °F), too warm (63–73 °F), and too cool (38–49 °F). Overall, responses to conditions that were warmer or cooler than ideal were as predicted, and weight loss, softness, and browning were all minimized when fruit were stored at 50 or 60 °F. We did, however, see some differences among cultivars in susceptibility to common postharvest storage problems. In conclusion, we found that cultivar choice can be important for high-tunnel eggplant producers, especially if postharvest storage conditions are not ideal. We also found that pruning and parthenocarpy did not enhance marketable yields, allowing growers to reduce labor and seed costs without impacting yield or fruit quality negatively.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05311-23
Sun-Mi Lee, Sin-Ae Park
This study investigated whether coding (computer programming) and horticultural activities alone and combined have psychophysiological and psychological effects. Compulsory computer programming has been required in elementary schools in South Korea since 2018. A total of 34 participants, who were students between the ages of 11 and 16 years were involved in the study. Participants undertook the following activities in random order: connecting components, coding, horticultural activities, and combining coding and horticultural activities (run program, horticultural activities, and coding modifications). Brain waves were measured during the activity, and a subjective self-report evaluation was conducted at the end of each activity. In a spectral edge frequency of 50% of the alpha spectrum band, which indicates a comfortable, stable, and relaxed state, there was a significant difference in the left prefrontal pole when participants performed a combination of coding and horticultural activities (P < 0.001). In addition, there were significant differences in the coding activities based on horticultural activities (P < 0.05, P < 0.001), with a relatively low beta, indicating attention and alertness; relative mid beta, indicating active awareness; ratio of SMR to theta, indicating focused attention; and the ratio of mid beta to theta, indicating concentrated focus. It is judged that activities involving plant engagement can contribute to comfort, stability, focused attention, and positive effects in response to active stimuli. As a result of a subjective evaluation, it was found that horticultural activities had a positive effect on participants’ emotions (P < 0.01). This study demonstrates that horticulture-based coding activities have a positive impact on physiological relaxation and cognitive enhancement, and are also associated with subjectively reported positive emotions.
{"title":"Psychophysiological and Psychological Responses of Teenage Students Conducting Computer Programming Activities Combined with Horticultural Activities","authors":"Sun-Mi Lee, Sin-Ae Park","doi":"10.21273/horttech05311-23","DOIUrl":"https://doi.org/10.21273/horttech05311-23","url":null,"abstract":"This study investigated whether coding (computer programming) and horticultural activities alone and combined have psychophysiological and psychological effects. Compulsory computer programming has been required in elementary schools in South Korea since 2018. A total of 34 participants, who were students between the ages of 11 and 16 years were involved in the study. Participants undertook the following activities in random order: connecting components, coding, horticultural activities, and combining coding and horticultural activities (run program, horticultural activities, and coding modifications). Brain waves were measured during the activity, and a subjective self-report evaluation was conducted at the end of each activity. In a spectral edge frequency of 50% of the alpha spectrum band, which indicates a comfortable, stable, and relaxed state, there was a significant difference in the left prefrontal pole when participants performed a combination of coding and horticultural activities (P < 0.001). In addition, there were significant differences in the coding activities based on horticultural activities (P < 0.05, P < 0.001), with a relatively low beta, indicating attention and alertness; relative mid beta, indicating active awareness; ratio of SMR to theta, indicating focused attention; and the ratio of mid beta to theta, indicating concentrated focus. It is judged that activities involving plant engagement can contribute to comfort, stability, focused attention, and positive effects in response to active stimuli. As a result of a subjective evaluation, it was found that horticultural activities had a positive effect on participants’ emotions (P < 0.01). This study demonstrates that horticulture-based coding activities have a positive impact on physiological relaxation and cognitive enhancement, and are also associated with subjectively reported positive emotions.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous studies have demonstrated the beneficial impact of plants on the overall well-being of elderly individuals. However, there remains a gap in our understanding which specific plant species have a notable influence on the physical and mental health of the elderly population. Among the various woody ornamental plants used worldwide, crape myrtle (Lagerstroemia indica) holds a growing significance in the natural environment. This study aimed to investigate the physiological parameters (such as blood pressure, heart rate, blood oxygen saturation, and fingertip pulse) as well as psychological aspects (measured using positive and negative affect schedule scores and smile face scale) associated with crape myrtle observation activities. The finding revealed the following key points: 1) engaging in crape myrtle observation activities significantly enhanced the physical and mental well-being of elderly participants; 2) the impact of observing crape myrtle flowers differed notably from that of observing its leaves, with flower observation having a more positive effect on the physical and mental health of elderly individuals; and 3) the natural environment was found to exert an influence on the physical and mental health of elderly individuals through visual stimulation. Following the observation of crape myrtle, there was a significant decrease in the physiological indices of elderly individuals. Our findings offer valuable insights into the therapeutic benefits of crape myrtle observation activities and contributing evidence-based recommendations for future landscape design aimed at enhancing well-being.
{"title":"Flowers or Leaves? Assessing the Impact of Crape Myrtle Observation on the Physical and Mental Well-being of Senior Citizens","authors":"Siwen Hao, Donglin Zhang, Yafeng Wen, Yiqun Yang, Hengwei Zhang, Lu Hou","doi":"10.21273/horttech05364-23","DOIUrl":"https://doi.org/10.21273/horttech05364-23","url":null,"abstract":"Previous studies have demonstrated the beneficial impact of plants on the overall well-being of elderly individuals. However, there remains a gap in our understanding which specific plant species have a notable influence on the physical and mental health of the elderly population. Among the various woody ornamental plants used worldwide, crape myrtle (Lagerstroemia indica) holds a growing significance in the natural environment. This study aimed to investigate the physiological parameters (such as blood pressure, heart rate, blood oxygen saturation, and fingertip pulse) as well as psychological aspects (measured using positive and negative affect schedule scores and smile face scale) associated with crape myrtle observation activities. The finding revealed the following key points: 1) engaging in crape myrtle observation activities significantly enhanced the physical and mental well-being of elderly participants; 2) the impact of observing crape myrtle flowers differed notably from that of observing its leaves, with flower observation having a more positive effect on the physical and mental health of elderly individuals; and 3) the natural environment was found to exert an influence on the physical and mental health of elderly individuals through visual stimulation. Following the observation of crape myrtle, there was a significant decrease in the physiological indices of elderly individuals. Our findings offer valuable insights into the therapeutic benefits of crape myrtle observation activities and contributing evidence-based recommendations for future landscape design aimed at enhancing well-being.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05401-24
Alicia L. Rihn, Ariana P. Torres, B. Behe, Susan S. Barton
The increasing demand for sustainable products has helped spur demand for native plants. This study used an online survey of 2066 US consumers, a factor analysis, and Ward’s linkage cluster analysis to identify unique customer segments in the native plant marketplace. The following three clusters were identified: native averse (31.6%), native curious (35.7%), and native enthusiast (32.7%). The native enthusiast cluster agreed strongly with positive statements related to native plant perceptions and attributes. The native averse cluster exhibited the lowest level of agreement with these items and the greatest level of agreement with negative or neutral statements about native plants. The native curious cluster was intermediate between the other clusters but generally agreed with positive attributes. Demographic characteristics impacted cluster membership. The marketing implications are discussed.
{"title":"Unwrapping the Native Plant Black Box: Consumer Perceptions and Segments for Target Marketing Strategies","authors":"Alicia L. Rihn, Ariana P. Torres, B. Behe, Susan S. Barton","doi":"10.21273/horttech05401-24","DOIUrl":"https://doi.org/10.21273/horttech05401-24","url":null,"abstract":"The increasing demand for sustainable products has helped spur demand for native plants. This study used an online survey of 2066 US consumers, a factor analysis, and Ward’s linkage cluster analysis to identify unique customer segments in the native plant marketplace. The following three clusters were identified: native averse (31.6%), native curious (35.7%), and native enthusiast (32.7%). The native enthusiast cluster agreed strongly with positive statements related to native plant perceptions and attributes. The native averse cluster exhibited the lowest level of agreement with these items and the greatest level of agreement with negative or neutral statements about native plants. The native curious cluster was intermediate between the other clusters but generally agreed with positive attributes. Demographic characteristics impacted cluster membership. The marketing implications are discussed.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05375-23
Curt R. Rom
The American Society for Horticultural Science Education Publication Excellence award was established in 1997 to recognize the most outstanding publication in ASHS journals related to education and teaching. This article reviews the award history, authors, and topics of the awarded papers. The award was recognized annually from 1998 to 2023 except for 3 years when no award was given. The majority of awarded papers were published in HortTechnology. Awards were presented to 70 authors from 23 institutions in 20 states and two other countries. Of the awarded papers, three had single authors, and 20 had multiple authors. Several awarded authors have been recognized in other ASHS publication awards or professional career awards. The majority of awarded papers focused on undergraduate students, teaching methods, and floriculture or ornamental topics.
{"title":"Twenty-five Years of Award-winning Education Publication Excellence in ASHS Journals","authors":"Curt R. Rom","doi":"10.21273/horttech05375-23","DOIUrl":"https://doi.org/10.21273/horttech05375-23","url":null,"abstract":"The American Society for Horticultural Science Education Publication Excellence award was established in 1997 to recognize the most outstanding publication in ASHS journals related to education and teaching. This article reviews the award history, authors, and topics of the awarded papers. The award was recognized annually from 1998 to 2023 except for 3 years when no award was given. The majority of awarded papers were published in HortTechnology. Awards were presented to 70 authors from 23 institutions in 20 states and two other countries. Of the awarded papers, three had single authors, and 20 had multiple authors. Several awarded authors have been recognized in other ASHS publication awards or professional career awards. The majority of awarded papers focused on undergraduate students, teaching methods, and floriculture or ornamental topics.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05358-23
Curt R. Rom
The American Society for Horticultural Science (ASHS) has since its inception published annual serial monographs or journals to achieve its mission of communicating horticultural science. To recognize the accomplishments of the membership, a series of professional awards was created. After the individual awards, the ASHS created publication awards. This paper, and the papers that follow, document the publication awards of the ASHS. The papers were based on presentations at the 2023 annual conference and serve as additional recognition of the contributions of member authors and as a historical record of achievements of the ASHS.
{"title":"The Most Outstanding—Recognizing Achievements through ASHS Publication Awards: A Brief History of Publications and an Introduction to Publication Awards","authors":"Curt R. Rom","doi":"10.21273/horttech05358-23","DOIUrl":"https://doi.org/10.21273/horttech05358-23","url":null,"abstract":"The American Society for Horticultural Science (ASHS) has since its inception published annual serial monographs or journals to achieve its mission of communicating horticultural science. To recognize the accomplishments of the membership, a series of professional awards was created. After the individual awards, the ASHS created publication awards. This paper, and the papers that follow, document the publication awards of the ASHS. The papers were based on presentations at the 2023 annual conference and serve as additional recognition of the contributions of member authors and as a historical record of achievements of the ASHS.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05409-24
Richard Gaisser, Kaspar Kuehn, Marvin Pritts
Growers producing day-neutral strawberries (Fragaria ×ananassa) in temperate climates face challenges when attempting to extend the season and mitigate the effects of rain. Conventional plastic coverings over low tunnels have been used for these purposes, but they often exacerbate heat-induced problems in summer. We examined two approaches for addressing this challenge. The first was to start dormant bare root ‘Albion’ strawberry plants in small pots in the greenhouse, then plant them into the field in spring so they could begin production before the onset of consistently high temperatures. Plants set in small pots on 26 Feb in the greenhouse and field planted on 6 May were compared with bare root plants set directly into the field on 6 May. The second approach used various low tunnel coverings to modify the light and temperature environment around the plants. Three coverings were woven nets embedded with reflective strips at various densities that allowed 50%, 60%, and 70% light transmission, and these were intended to lower temperatures under the covers by reflecting infrared radiation. A fourth covering was a polyethylene plastic embedded with optically active additives that shift incident light into wavelengths that are more photosynthetically active. Two other covers were standard commercial polyethylene plastics, and the final treatment was an uncovered control. Over the 2020 and 2021 growing seasons (hot and dry vs. moderate and wet, respectively), plots were harvested once or twice a week from June through October and fruit yield, size, and marketability were assessed. In both years, strawberry plants started in the greenhouse produced significantly higher yields than bare root plants over the season (30.5% and 43.7%). Bare root plants were less responsive to cover type than greenhouse plants. In 2020, yields tended to be higher in the middle of summer in plots with reflective coverings that reduced temperature and higher later in the season with coverings of wavelength-shifting film. Polyethylene covers that increased temperature without shifting the light spectrum had lower yields. Under the cooler conditions of 2021, plants under covers that increased temperature tended to have higher yields. In a third year (2023), bare root plants were covered with a reflective covering from 29 Jun until 1 Sep, then this cover was replaced with polyethylene with optical additives as the weather cooled and light levels dropped. This sequenced treatment was compared with uncovered plots and plots covered with standard commercial polyethylene plastic. Plants under the two-phase sequential covering performed significantly better than uncovered plots or those covered with standard polyethylene plastic alone.
{"title":"Novel Low Tunnel Coverings and Plant Type Affect Productivity of Day-neutral Strawberries","authors":"Richard Gaisser, Kaspar Kuehn, Marvin Pritts","doi":"10.21273/horttech05409-24","DOIUrl":"https://doi.org/10.21273/horttech05409-24","url":null,"abstract":"Growers producing day-neutral strawberries (Fragaria ×ananassa) in temperate climates face challenges when attempting to extend the season and mitigate the effects of rain. Conventional plastic coverings over low tunnels have been used for these purposes, but they often exacerbate heat-induced problems in summer. We examined two approaches for addressing this challenge. The first was to start dormant bare root ‘Albion’ strawberry plants in small pots in the greenhouse, then plant them into the field in spring so they could begin production before the onset of consistently high temperatures. Plants set in small pots on 26 Feb in the greenhouse and field planted on 6 May were compared with bare root plants set directly into the field on 6 May. The second approach used various low tunnel coverings to modify the light and temperature environment around the plants. Three coverings were woven nets embedded with reflective strips at various densities that allowed 50%, 60%, and 70% light transmission, and these were intended to lower temperatures under the covers by reflecting infrared radiation. A fourth covering was a polyethylene plastic embedded with optically active additives that shift incident light into wavelengths that are more photosynthetically active. Two other covers were standard commercial polyethylene plastics, and the final treatment was an uncovered control. Over the 2020 and 2021 growing seasons (hot and dry vs. moderate and wet, respectively), plots were harvested once or twice a week from June through October and fruit yield, size, and marketability were assessed. In both years, strawberry plants started in the greenhouse produced significantly higher yields than bare root plants over the season (30.5% and 43.7%). Bare root plants were less responsive to cover type than greenhouse plants. In 2020, yields tended to be higher in the middle of summer in plots with reflective coverings that reduced temperature and higher later in the season with coverings of wavelength-shifting film. Polyethylene covers that increased temperature without shifting the light spectrum had lower yields. Under the cooler conditions of 2021, plants under covers that increased temperature tended to have higher yields. In a third year (2023), bare root plants were covered with a reflective covering from 29 Jun until 1 Sep, then this cover was replaced with polyethylene with optical additives as the weather cooled and light levels dropped. This sequenced treatment was compared with uncovered plots and plots covered with standard commercial polyethylene plastic. Plants under the two-phase sequential covering performed significantly better than uncovered plots or those covered with standard polyethylene plastic alone.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05420-24
K. Vollmer, L. Sosnoskie, M. VanGessel, Thierry E. Besançon
Cucurbit crops comprise ∼25% of the vegetable acreage in the mid-Atlantic and Northeastern United States. However, options for postemergence weed control in these crops are limited. Overlapping herbicides is a technique that involves sequential applications of soil-applied residual herbicides to lengthen herbicidal activity before the first herbicide dissipates. Residual herbicides such as S-metolachlor will not control emerged weeds, but weed control efficacy may be extended if these herbicides are applied after crop emergence, but before weed emergence occurs. Currently S-metolachlor is not labeled for broadcast applications over cucurbit crops. Greenhouse studies were conducted to evaluate pumpkin, cucumber, and summer squash variety response to varying S-metolachlor rates. S-metolachlor was applied at 1.42 and 2.85 lb/acre at the two-leaf stage of pumpkin and 0.71, 1.42, 2.85, and 5.7 lb/acre at the two-leaf stage of cucumber and summer squash. Cucumber showed a greater response to S-metolachlor with up to 67% injury observed at 5.70 lb/acre. S-metolachlor applications to pumpkin and summer squash resulted in less than 6% injury, regardless of application rate or crop variety. S-metolachlor applied at 2.85 lb/acre reduced pumpkin and cucumber dry weight 6% and 19%, respectively, but did not reduce squash dry weight. S-metolachlor reduced cucumber dry weight 78% for all varieties. Pumpkin varieties ‘Munchkin’ and ‘Baby Bear’ exhibited a 23% difference in dry weight, but no other differences were observed among other varieties because of S-metolachlor applications. Summer squash varieties ‘Respect’ and ‘Golden Glory’ exhibited a 31% difference in dry weight, but no other differences were observed among other varieties. Results show that pumpkin and summer squash demonstrated good crop safety when S-metolachlor was applied as a broadcast treatment after crop emergence. However, caution should be urged when applying this herbicide to cucumber.
{"title":"Varietal Tolerance of Cucurbitaceous Crops with S-metolachlor Applied Postemergence","authors":"K. Vollmer, L. Sosnoskie, M. VanGessel, Thierry E. Besançon","doi":"10.21273/horttech05420-24","DOIUrl":"https://doi.org/10.21273/horttech05420-24","url":null,"abstract":"Cucurbit crops comprise ∼25% of the vegetable acreage in the mid-Atlantic and Northeastern United States. However, options for postemergence weed control in these crops are limited. Overlapping herbicides is a technique that involves sequential applications of soil-applied residual herbicides to lengthen herbicidal activity before the first herbicide dissipates. Residual herbicides such as S-metolachlor will not control emerged weeds, but weed control efficacy may be extended if these herbicides are applied after crop emergence, but before weed emergence occurs. Currently S-metolachlor is not labeled for broadcast applications over cucurbit crops. Greenhouse studies were conducted to evaluate pumpkin, cucumber, and summer squash variety response to varying S-metolachlor rates. S-metolachlor was applied at 1.42 and 2.85 lb/acre at the two-leaf stage of pumpkin and 0.71, 1.42, 2.85, and 5.7 lb/acre at the two-leaf stage of cucumber and summer squash. Cucumber showed a greater response to S-metolachlor with up to 67% injury observed at 5.70 lb/acre. S-metolachlor applications to pumpkin and summer squash resulted in less than 6% injury, regardless of application rate or crop variety. S-metolachlor applied at 2.85 lb/acre reduced pumpkin and cucumber dry weight 6% and 19%, respectively, but did not reduce squash dry weight. S-metolachlor reduced cucumber dry weight 78% for all varieties. Pumpkin varieties ‘Munchkin’ and ‘Baby Bear’ exhibited a 23% difference in dry weight, but no other differences were observed among other varieties because of S-metolachlor applications. Summer squash varieties ‘Respect’ and ‘Golden Glory’ exhibited a 31% difference in dry weight, but no other differences were observed among other varieties. Results show that pumpkin and summer squash demonstrated good crop safety when S-metolachlor was applied as a broadcast treatment after crop emergence. However, caution should be urged when applying this herbicide to cucumber.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}