{"title":"学习与系统协同设计的案例","authors":"C. Liang, Hui Xue, Mao Yang, Lidong Zhou","doi":"10.1145/3352020.3352031","DOIUrl":null,"url":null,"abstract":"While decision-makings in systems are commonly solved with explicit rules and heuristics, machine learning (ML) and deep learning (DL) have been driving a paradigm shift in modern system design. Based on our decade of experience in operationalizing a large production cloud system, Web Search, learning fills the gap in comprehending and taming the system design and operation complexity. However, rather than just improving specific ML/DL algorithms or system features, we posit that the key to unlocking the full potential of learning-augmented systems is a principled methodology promoting learning-and-system co-design. On this basis, we present the AutoSys, a common framework for the development of learning-augmented systems.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"53 1","pages":"68 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3352020.3352031","citationCount":"3","resultStr":"{\"title\":\"The Case for Learning-and-System Co-design\",\"authors\":\"C. Liang, Hui Xue, Mao Yang, Lidong Zhou\",\"doi\":\"10.1145/3352020.3352031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While decision-makings in systems are commonly solved with explicit rules and heuristics, machine learning (ML) and deep learning (DL) have been driving a paradigm shift in modern system design. Based on our decade of experience in operationalizing a large production cloud system, Web Search, learning fills the gap in comprehending and taming the system design and operation complexity. However, rather than just improving specific ML/DL algorithms or system features, we posit that the key to unlocking the full potential of learning-augmented systems is a principled methodology promoting learning-and-system co-design. On this basis, we present the AutoSys, a common framework for the development of learning-augmented systems.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"53 1\",\"pages\":\"68 - 74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3352020.3352031\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3352020.3352031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3352020.3352031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
While decision-makings in systems are commonly solved with explicit rules and heuristics, machine learning (ML) and deep learning (DL) have been driving a paradigm shift in modern system design. Based on our decade of experience in operationalizing a large production cloud system, Web Search, learning fills the gap in comprehending and taming the system design and operation complexity. However, rather than just improving specific ML/DL algorithms or system features, we posit that the key to unlocking the full potential of learning-augmented systems is a principled methodology promoting learning-and-system co-design. On this basis, we present the AutoSys, a common framework for the development of learning-augmented systems.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.