V. Nandi, Alexandre Zaccaron, F. Raupp-Pereira, S. Arcaro, A. Bernardin, O. Montedo
{"title":"用于制造快速干燥红色陶瓷的粘土材料的塑性行为","authors":"V. Nandi, Alexandre Zaccaron, F. Raupp-Pereira, S. Arcaro, A. Bernardin, O. Montedo","doi":"10.1180/clm.2023.9","DOIUrl":null,"url":null,"abstract":"Abstract Fast drying (~60 min) is useful for optimizing production processes by increasing productivity and reducing costs and environmental impacts, especially in red ceramic industries in Brazil. However, suitable clays are necessary and, currently, studies focused on the plastic behaviour of clays with compositions suitable for extrusion, especially for fast drying, are scarce. Therefore, in this study, three different clays from the same mineral deposit were studied for producing clay-based structural products via fast drying. The clays were characterized according to their chemical, mineralogical and thermal properties, particle size, cation-exchange capacity, specific surface area and open pore volume distribution. Ten formulations were developed using a simplex-centroid mixture design of experiments and their plasticity index (PI) values were determined. The response surfaces of the formulations were evaluated according to their PI, while the formation characteristics were determined according to their extrusion workability factor values. Formulations F5 (50.0 wt.% yellow clay and 50.0 wt.% green clay) and F8 (66.6 wt.% yellow clay, 16.7 wt.% grey clay and 16.7 wt.% green clay; PI = 15.5–16.6%) displayed optimal extrusion properties, followed by formulations F7 (33.3 wt.% yellow clay, 33.3 wt.% grey clay and 33.3 wt.% green clay) and F10 (16.7 wt.% yellow clay, 16.7 wt.% grey clay and 66.6 wt.% green clay; PI = 13.8–14.2%), which are within acceptable extrusion index values. Thus, the chosen formulations have significant potential for use in the manufacture of fast-drying red ceramics.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"58 1","pages":"26 - 37"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plastic behaviour of clay materials for the manufacture of fast-drying red ceramics\",\"authors\":\"V. Nandi, Alexandre Zaccaron, F. Raupp-Pereira, S. Arcaro, A. Bernardin, O. Montedo\",\"doi\":\"10.1180/clm.2023.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fast drying (~60 min) is useful for optimizing production processes by increasing productivity and reducing costs and environmental impacts, especially in red ceramic industries in Brazil. However, suitable clays are necessary and, currently, studies focused on the plastic behaviour of clays with compositions suitable for extrusion, especially for fast drying, are scarce. Therefore, in this study, three different clays from the same mineral deposit were studied for producing clay-based structural products via fast drying. The clays were characterized according to their chemical, mineralogical and thermal properties, particle size, cation-exchange capacity, specific surface area and open pore volume distribution. Ten formulations were developed using a simplex-centroid mixture design of experiments and their plasticity index (PI) values were determined. The response surfaces of the formulations were evaluated according to their PI, while the formation characteristics were determined according to their extrusion workability factor values. Formulations F5 (50.0 wt.% yellow clay and 50.0 wt.% green clay) and F8 (66.6 wt.% yellow clay, 16.7 wt.% grey clay and 16.7 wt.% green clay; PI = 15.5–16.6%) displayed optimal extrusion properties, followed by formulations F7 (33.3 wt.% yellow clay, 33.3 wt.% grey clay and 33.3 wt.% green clay) and F10 (16.7 wt.% yellow clay, 16.7 wt.% grey clay and 66.6 wt.% green clay; PI = 13.8–14.2%), which are within acceptable extrusion index values. Thus, the chosen formulations have significant potential for use in the manufacture of fast-drying red ceramics.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":\"58 1\",\"pages\":\"26 - 37\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2023.9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2023.9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Plastic behaviour of clay materials for the manufacture of fast-drying red ceramics
Abstract Fast drying (~60 min) is useful for optimizing production processes by increasing productivity and reducing costs and environmental impacts, especially in red ceramic industries in Brazil. However, suitable clays are necessary and, currently, studies focused on the plastic behaviour of clays with compositions suitable for extrusion, especially for fast drying, are scarce. Therefore, in this study, three different clays from the same mineral deposit were studied for producing clay-based structural products via fast drying. The clays were characterized according to their chemical, mineralogical and thermal properties, particle size, cation-exchange capacity, specific surface area and open pore volume distribution. Ten formulations were developed using a simplex-centroid mixture design of experiments and their plasticity index (PI) values were determined. The response surfaces of the formulations were evaluated according to their PI, while the formation characteristics were determined according to their extrusion workability factor values. Formulations F5 (50.0 wt.% yellow clay and 50.0 wt.% green clay) and F8 (66.6 wt.% yellow clay, 16.7 wt.% grey clay and 16.7 wt.% green clay; PI = 15.5–16.6%) displayed optimal extrusion properties, followed by formulations F7 (33.3 wt.% yellow clay, 33.3 wt.% grey clay and 33.3 wt.% green clay) and F10 (16.7 wt.% yellow clay, 16.7 wt.% grey clay and 66.6 wt.% green clay; PI = 13.8–14.2%), which are within acceptable extrusion index values. Thus, the chosen formulations have significant potential for use in the manufacture of fast-drying red ceramics.
期刊介绍:
Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.