Theodore Sentoukas , Garoufalia Charitou , Janine Wagner , Anja Maria Wagemans , Thomas Moschakis , Aristeidis Papagiannopoulos
{"title":"乙醇变性乳清蛋白形成纳米颗粒","authors":"Theodore Sentoukas , Garoufalia Charitou , Janine Wagner , Anja Maria Wagemans , Thomas Moschakis , Aristeidis Papagiannopoulos","doi":"10.1016/j.foostr.2023.100337","DOIUrl":null,"url":null,"abstract":"<div><p>Protein denaturation can be exploited to modulate its physicochemical properties and create different micro- or nano- structures that could be used for the development of innovative protein-enriched food formulations. This study introduces a novel approach for the production of nanoparticles by denaturing whey protein isolate with ethanol. Whey proteins were subjected to water/ethanol mixtures containing up to 70% w/w ethanol, at varying pH values and NaCl concentrations, to prepare protein nanoparticles in a controlled manner. Confocal microscopy, ATR-FTIR spectroscopy, fluorescence spectroscopy, laser diffraction analysis, and dynamic light scattering were employed to investigate their impact on protein denaturation and nanoparticles’ characteristics. A steep decrease of hydrophobicity up to 50% w/w ethanol was found. A dependence between denaturation and lower pH values was observed. Confocal microscopy revealed that small changes in pH affected the protein’s microstructure, while controlling ethanol concentration allowed for the production of different nanoparticles within narrow pH ranges. High concentrations of NaCl led to extended aggregation even at low ethanol content, while nanoparticles were formed at low NaCl (50 mM) and 30% w/w ethanol. Overall, ethanol denaturation of whey proteins presents a promising technique for the formation of protein nanoparticles.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100337"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of nanoparticles from ethanol-denatured whey proteins\",\"authors\":\"Theodore Sentoukas , Garoufalia Charitou , Janine Wagner , Anja Maria Wagemans , Thomas Moschakis , Aristeidis Papagiannopoulos\",\"doi\":\"10.1016/j.foostr.2023.100337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein denaturation can be exploited to modulate its physicochemical properties and create different micro- or nano- structures that could be used for the development of innovative protein-enriched food formulations. This study introduces a novel approach for the production of nanoparticles by denaturing whey protein isolate with ethanol. Whey proteins were subjected to water/ethanol mixtures containing up to 70% w/w ethanol, at varying pH values and NaCl concentrations, to prepare protein nanoparticles in a controlled manner. Confocal microscopy, ATR-FTIR spectroscopy, fluorescence spectroscopy, laser diffraction analysis, and dynamic light scattering were employed to investigate their impact on protein denaturation and nanoparticles’ characteristics. A steep decrease of hydrophobicity up to 50% w/w ethanol was found. A dependence between denaturation and lower pH values was observed. Confocal microscopy revealed that small changes in pH affected the protein’s microstructure, while controlling ethanol concentration allowed for the production of different nanoparticles within narrow pH ranges. High concentrations of NaCl led to extended aggregation even at low ethanol content, while nanoparticles were formed at low NaCl (50 mM) and 30% w/w ethanol. Overall, ethanol denaturation of whey proteins presents a promising technique for the formation of protein nanoparticles.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"37 \",\"pages\":\"Article 100337\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329123000308\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000308","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Formation of nanoparticles from ethanol-denatured whey proteins
Protein denaturation can be exploited to modulate its physicochemical properties and create different micro- or nano- structures that could be used for the development of innovative protein-enriched food formulations. This study introduces a novel approach for the production of nanoparticles by denaturing whey protein isolate with ethanol. Whey proteins were subjected to water/ethanol mixtures containing up to 70% w/w ethanol, at varying pH values and NaCl concentrations, to prepare protein nanoparticles in a controlled manner. Confocal microscopy, ATR-FTIR spectroscopy, fluorescence spectroscopy, laser diffraction analysis, and dynamic light scattering were employed to investigate their impact on protein denaturation and nanoparticles’ characteristics. A steep decrease of hydrophobicity up to 50% w/w ethanol was found. A dependence between denaturation and lower pH values was observed. Confocal microscopy revealed that small changes in pH affected the protein’s microstructure, while controlling ethanol concentration allowed for the production of different nanoparticles within narrow pH ranges. High concentrations of NaCl led to extended aggregation even at low ethanol content, while nanoparticles were formed at low NaCl (50 mM) and 30% w/w ethanol. Overall, ethanol denaturation of whey proteins presents a promising technique for the formation of protein nanoparticles.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.