C. Stoica, R. Maier, A. Istrate, Sebastian Bucaciuc, Alexandra Despa
{"title":"3d打印蜂窝结构的冲击性能分析","authors":"C. Stoica, R. Maier, A. Istrate, Sebastian Bucaciuc, Alexandra Despa","doi":"10.37358/mp.22.3.5607","DOIUrl":null,"url":null,"abstract":"\nThe purpose of this paper is to evaluate the behaviour of 3D printed honeycomb structures under low velocity impact loading for their use in energy absorption applications. Additive manufacturing technologies are part of a growing field that represents high interest for industries such as aerospace, automotive and naval. This paper aims to determine the mechanical properties of a 3D printed polymer - Polylactic Acid (PLA) manufactured by FDM (Fused Deposition Modelling) technology. In this regard, first the material is characterized by low velocity impact dynamic experimental tests. A finite Element Analysis (FEA) is performed in LS-Dyna software in order to validate the results. The samples were manufactured by varying the infill percent to investigate the influence of different parameters on a batch of samples for every configuration. The 3D CAD modelling for impact tests samples were performed in Catia V5. Among wide range of cellular structures, honeycomb non-auxetic hexagonal cell pattern was selected in this study, assuring high strength/weight ratio. The amount of energy absorbed during the impact, the failure and degradation of the impacted specimens were monitored, following the analysis of experimental and numerical data. A fair agreement was obtained between experimental and numerical results, showing that honeycomb developed lightweight structures exhibits a proper energy absorption capacity, with a mechanism of release similar to metal or composite materials honeycombs.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Behavior Analysis of 3-D Printed Honeycomb Structures\",\"authors\":\"C. Stoica, R. Maier, A. Istrate, Sebastian Bucaciuc, Alexandra Despa\",\"doi\":\"10.37358/mp.22.3.5607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe purpose of this paper is to evaluate the behaviour of 3D printed honeycomb structures under low velocity impact loading for their use in energy absorption applications. Additive manufacturing technologies are part of a growing field that represents high interest for industries such as aerospace, automotive and naval. This paper aims to determine the mechanical properties of a 3D printed polymer - Polylactic Acid (PLA) manufactured by FDM (Fused Deposition Modelling) technology. In this regard, first the material is characterized by low velocity impact dynamic experimental tests. A finite Element Analysis (FEA) is performed in LS-Dyna software in order to validate the results. The samples were manufactured by varying the infill percent to investigate the influence of different parameters on a batch of samples for every configuration. The 3D CAD modelling for impact tests samples were performed in Catia V5. Among wide range of cellular structures, honeycomb non-auxetic hexagonal cell pattern was selected in this study, assuring high strength/weight ratio. The amount of energy absorbed during the impact, the failure and degradation of the impacted specimens were monitored, following the analysis of experimental and numerical data. A fair agreement was obtained between experimental and numerical results, showing that honeycomb developed lightweight structures exhibits a proper energy absorption capacity, with a mechanism of release similar to metal or composite materials honeycombs.\\n\",\"PeriodicalId\":18360,\"journal\":{\"name\":\"Materiale Plastice\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiale Plastice\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37358/mp.22.3.5607\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.22.3.5607","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact Behavior Analysis of 3-D Printed Honeycomb Structures
The purpose of this paper is to evaluate the behaviour of 3D printed honeycomb structures under low velocity impact loading for their use in energy absorption applications. Additive manufacturing technologies are part of a growing field that represents high interest for industries such as aerospace, automotive and naval. This paper aims to determine the mechanical properties of a 3D printed polymer - Polylactic Acid (PLA) manufactured by FDM (Fused Deposition Modelling) technology. In this regard, first the material is characterized by low velocity impact dynamic experimental tests. A finite Element Analysis (FEA) is performed in LS-Dyna software in order to validate the results. The samples were manufactured by varying the infill percent to investigate the influence of different parameters on a batch of samples for every configuration. The 3D CAD modelling for impact tests samples were performed in Catia V5. Among wide range of cellular structures, honeycomb non-auxetic hexagonal cell pattern was selected in this study, assuring high strength/weight ratio. The amount of energy absorbed during the impact, the failure and degradation of the impacted specimens were monitored, following the analysis of experimental and numerical data. A fair agreement was obtained between experimental and numerical results, showing that honeycomb developed lightweight structures exhibits a proper energy absorption capacity, with a mechanism of release similar to metal or composite materials honeycombs.
期刊介绍:
Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest.
The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.