Nima Fard afshar, D. Kožulović, Stefan Henninger, Johannes Deutsch, P. Bechlars
{"title":"基于大涡模拟的高负荷三维线性涡轮叶栅中段湍流各向异性分析","authors":"Nima Fard afshar, D. Kožulović, Stefan Henninger, Johannes Deutsch, P. Bechlars","doi":"10.33737/jgpps/159784","DOIUrl":null,"url":null,"abstract":"This study analyzes the flow over a three-dimensional linear low-pressure turbine cascade blade using large eddy simulation at Re = 90,000. The computational model consists of one blade passage with periodic boundaries and synthetic turbulence is generated at the inlet of the domain. Various flow metrics, including isentropic Mach number distribution at mid-span and wake total pressure losses are compared with available experimental data and found to be in good agreement. A more detailed analysis of the turbulence with particular attention to the separation bubble region is subsequently presented. The analysis revealed that the turbulence is in a nearly two-component state very close to the wall region and gradually follows a certain anisotropy trajectory, as the distance from the wall increases. Even in the free-stream region no fully isotropic state is reached, due to large acceleration and flow turning. The results give a new insight into the state of turbulence within the separation region on the blade suction side and emphasize the deficiencies of the Reynolds-averaged Navier Stokes (RANS) turbulence models in reproducing the turbulence anisotropy. This insight is of relevance for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separation region.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Turbulence anisotropy analysis at the middle section of a highly loaded 3D linear turbine cascade using Large Eddy Simulation\",\"authors\":\"Nima Fard afshar, D. Kožulović, Stefan Henninger, Johannes Deutsch, P. Bechlars\",\"doi\":\"10.33737/jgpps/159784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study analyzes the flow over a three-dimensional linear low-pressure turbine cascade blade using large eddy simulation at Re = 90,000. The computational model consists of one blade passage with periodic boundaries and synthetic turbulence is generated at the inlet of the domain. Various flow metrics, including isentropic Mach number distribution at mid-span and wake total pressure losses are compared with available experimental data and found to be in good agreement. A more detailed analysis of the turbulence with particular attention to the separation bubble region is subsequently presented. The analysis revealed that the turbulence is in a nearly two-component state very close to the wall region and gradually follows a certain anisotropy trajectory, as the distance from the wall increases. Even in the free-stream region no fully isotropic state is reached, due to large acceleration and flow turning. The results give a new insight into the state of turbulence within the separation region on the blade suction side and emphasize the deficiencies of the Reynolds-averaged Navier Stokes (RANS) turbulence models in reproducing the turbulence anisotropy. This insight is of relevance for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separation region.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/159784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/159784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Turbulence anisotropy analysis at the middle section of a highly loaded 3D linear turbine cascade using Large Eddy Simulation
This study analyzes the flow over a three-dimensional linear low-pressure turbine cascade blade using large eddy simulation at Re = 90,000. The computational model consists of one blade passage with periodic boundaries and synthetic turbulence is generated at the inlet of the domain. Various flow metrics, including isentropic Mach number distribution at mid-span and wake total pressure losses are compared with available experimental data and found to be in good agreement. A more detailed analysis of the turbulence with particular attention to the separation bubble region is subsequently presented. The analysis revealed that the turbulence is in a nearly two-component state very close to the wall region and gradually follows a certain anisotropy trajectory, as the distance from the wall increases. Even in the free-stream region no fully isotropic state is reached, due to large acceleration and flow turning. The results give a new insight into the state of turbulence within the separation region on the blade suction side and emphasize the deficiencies of the Reynolds-averaged Navier Stokes (RANS) turbulence models in reproducing the turbulence anisotropy. This insight is of relevance for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separation region.