Shirish Sonawane , Kirill Fedorov , Manoj P. Rayaroth , Grzegorz Boczkaj
{"title":"超声活化过硫酸盐降解1,4-二氧六环在水和废水处理中的应用","authors":"Shirish Sonawane , Kirill Fedorov , Manoj P. Rayaroth , Grzegorz Boczkaj","doi":"10.1016/j.wri.2022.100183","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a hybrid advanced oxidation process (AOP) based on sonocavitational activation of persulfate (PS) for degradation of 1,4-dioxane during wastewater treatment. Application of sono-cavitation effectively convert PS to radical species demonstrating synergistic effect by increasing the reaction rate and reducing the required energy for activation. It is economically feasible and deployed alternative to the direct thermal activation method. A single and two-stage injection of PS were compared to eliminate self-scavenging effects related to excess of oxidant in system. A GC-MS analysis was used to determine the degradation products of dioxane and to propose the degradation mechanism. The studies revealed that the degradation was significantly enhanced by the addition of PS at molar ratio of oxidant to pollutant 4 with a two-stage injection. Under optimal conditions at US density of 105 W/cm<sup>2</sup>, dioxane with an initial concentration of 100 mg/L was completely degraded in 120 min.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"28 ","pages":"Article 100183"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371722000166/pdfft?md5=2cf9fd86d5b1fd9176f010ccd1573675&pid=1-s2.0-S2212371722000166-main.pdf","citationCount":"10","resultStr":"{\"title\":\"Degradation of 1,4-dioxane by sono-activated persulfates for water and wastewater treatment applications\",\"authors\":\"Shirish Sonawane , Kirill Fedorov , Manoj P. Rayaroth , Grzegorz Boczkaj\",\"doi\":\"10.1016/j.wri.2022.100183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a hybrid advanced oxidation process (AOP) based on sonocavitational activation of persulfate (PS) for degradation of 1,4-dioxane during wastewater treatment. Application of sono-cavitation effectively convert PS to radical species demonstrating synergistic effect by increasing the reaction rate and reducing the required energy for activation. It is economically feasible and deployed alternative to the direct thermal activation method. A single and two-stage injection of PS were compared to eliminate self-scavenging effects related to excess of oxidant in system. A GC-MS analysis was used to determine the degradation products of dioxane and to propose the degradation mechanism. The studies revealed that the degradation was significantly enhanced by the addition of PS at molar ratio of oxidant to pollutant 4 with a two-stage injection. Under optimal conditions at US density of 105 W/cm<sup>2</sup>, dioxane with an initial concentration of 100 mg/L was completely degraded in 120 min.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"28 \",\"pages\":\"Article 100183\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000166/pdfft?md5=2cf9fd86d5b1fd9176f010ccd1573675&pid=1-s2.0-S2212371722000166-main.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000166\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371722000166","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Degradation of 1,4-dioxane by sono-activated persulfates for water and wastewater treatment applications
This paper presents a hybrid advanced oxidation process (AOP) based on sonocavitational activation of persulfate (PS) for degradation of 1,4-dioxane during wastewater treatment. Application of sono-cavitation effectively convert PS to radical species demonstrating synergistic effect by increasing the reaction rate and reducing the required energy for activation. It is economically feasible and deployed alternative to the direct thermal activation method. A single and two-stage injection of PS were compared to eliminate self-scavenging effects related to excess of oxidant in system. A GC-MS analysis was used to determine the degradation products of dioxane and to propose the degradation mechanism. The studies revealed that the degradation was significantly enhanced by the addition of PS at molar ratio of oxidant to pollutant 4 with a two-stage injection. Under optimal conditions at US density of 105 W/cm2, dioxane with an initial concentration of 100 mg/L was completely degraded in 120 min.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry