西北中药产区土壤有机碳空间分布的控制因素1

IF 2.1 Q3 SOIL SCIENCE Frontiers in soil science Pub Date : 2022-08-15 DOI:10.3389/fsoil.2022.877261
M. He, Liang Tang, Cheng-yi Li, Jianxin Ren
{"title":"西北中药产区土壤有机碳空间分布的控制因素1","authors":"M. He, Liang Tang, Cheng-yi Li, Jianxin Ren","doi":"10.3389/fsoil.2022.877261","DOIUrl":null,"url":null,"abstract":"Soil organic carbon is an important factor for the cultivation and production of traditional Chinese medicine. This study aimed to reveal the spatial distribution of the soil organic carbon density (SOCD) and the effects of the climatic and topographic factors in Longxi County (Gansu Province, China). The soil organic carbon (SOC) from 200 sampling points were collected and analyzed in 2018. Results showed that the total SOCD was 26.7 ± 10.2 Mg ha-1, while the SOCDs at a soil depth of 0–10, 10–30, and 30–50 cm were 6.3 ± 1.7, 11.0 ± 3.8, and 9.3 ± 4.8 Mg ha-1, respectively. The temperature, precipitation, elevation, and stream power index showed significant correlations with the SOCD at each soil layer. With an increasing soil depth, the correlation between the slope, relief amplitude, surface roughness, and SOCD gradually decreased. From the central plains to the mountainous areas, the SOCD increased with rising elevation, while the valley plain that formed by the river basin showed low levels of SOCD. Therefore, the scientific management of soil fertility and the development of precision agriculture, combined in a soil testing fertilization formula, will guarantee the healthy development of the Chinese herbal medicine planting.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors controlling the spatial distribution of soil organic carbon in the Chinese medicine producing area of NW China 1\",\"authors\":\"M. He, Liang Tang, Cheng-yi Li, Jianxin Ren\",\"doi\":\"10.3389/fsoil.2022.877261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil organic carbon is an important factor for the cultivation and production of traditional Chinese medicine. This study aimed to reveal the spatial distribution of the soil organic carbon density (SOCD) and the effects of the climatic and topographic factors in Longxi County (Gansu Province, China). The soil organic carbon (SOC) from 200 sampling points were collected and analyzed in 2018. Results showed that the total SOCD was 26.7 ± 10.2 Mg ha-1, while the SOCDs at a soil depth of 0–10, 10–30, and 30–50 cm were 6.3 ± 1.7, 11.0 ± 3.8, and 9.3 ± 4.8 Mg ha-1, respectively. The temperature, precipitation, elevation, and stream power index showed significant correlations with the SOCD at each soil layer. With an increasing soil depth, the correlation between the slope, relief amplitude, surface roughness, and SOCD gradually decreased. From the central plains to the mountainous areas, the SOCD increased with rising elevation, while the valley plain that formed by the river basin showed low levels of SOCD. Therefore, the scientific management of soil fertility and the development of precision agriculture, combined in a soil testing fertilization formula, will guarantee the healthy development of the Chinese herbal medicine planting.\",\"PeriodicalId\":73107,\"journal\":{\"name\":\"Frontiers in soil science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in soil science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsoil.2022.877261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2022.877261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤有机碳是影响中药材种植和生产的重要因素。本研究旨在揭示甘肃陇西县土壤有机碳密度的空间分布以及气候和地形因素的影响。2018年对200个采样点的土壤有机碳(SOC)进行了采集和分析。结果显示,总SOCD为26.7±10.2 Mg ha-1,而土壤深度为0–10、10–30和30–50 cm的SOCD分别为6.3±1.7、11.0±3.8和9.3±4.8 Mg ha-2。各土层的温度、降水量、海拔和水力指数与SOCD呈显著相关。随着土壤深度的增加,坡度、起伏幅度、表面粗糙度和SOCD之间的相关性逐渐降低。从中部平原到山区,SOCD随着海拔的升高而增加,而由流域形成的河谷平原则表现出较低的SOCD水平。因此,科学管理土壤肥力,发展精准农业,结合测土施肥配方,将保证中药材种植的健康发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors controlling the spatial distribution of soil organic carbon in the Chinese medicine producing area of NW China 1
Soil organic carbon is an important factor for the cultivation and production of traditional Chinese medicine. This study aimed to reveal the spatial distribution of the soil organic carbon density (SOCD) and the effects of the climatic and topographic factors in Longxi County (Gansu Province, China). The soil organic carbon (SOC) from 200 sampling points were collected and analyzed in 2018. Results showed that the total SOCD was 26.7 ± 10.2 Mg ha-1, while the SOCDs at a soil depth of 0–10, 10–30, and 30–50 cm were 6.3 ± 1.7, 11.0 ± 3.8, and 9.3 ± 4.8 Mg ha-1, respectively. The temperature, precipitation, elevation, and stream power index showed significant correlations with the SOCD at each soil layer. With an increasing soil depth, the correlation between the slope, relief amplitude, surface roughness, and SOCD gradually decreased. From the central plains to the mountainous areas, the SOCD increased with rising elevation, while the valley plain that formed by the river basin showed low levels of SOCD. Therefore, the scientific management of soil fertility and the development of precision agriculture, combined in a soil testing fertilization formula, will guarantee the healthy development of the Chinese herbal medicine planting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach Soil ecology, food systems, and organic waste: the critical network nobody is talking about Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1