{"title":"可持续发展与聚合物摩擦学","authors":"N. K. Myshkin, A. Ya. Grigoriev, Ga Zhang","doi":"10.3103/S1068366622060113","DOIUrl":null,"url":null,"abstract":"<p>The concept of sustainable development provides for the achievement of 17 goals formulated in 2015 by the UN General Assembly. Tribology is one of the factors for their achievement in the field of industry and innovation (Sustainable Development Goal 9 or SDG 9). Losses associated with friction and wear of machines are estimated at 3–5% of the gross national product. About a quarter of the energy consumed by industry is spent on overcoming frictional forces. Reducing friction losses, wear of machines, emissions from internal combustion engines (ICEs), using environmental-friendly lubricants are just a small list of tribology’s opportunities to achieve sustainable development goals. Applications of tribology have gone far beyond the solution of purely technical problems, and so-called green tribology has begun to play a special role in public life in recent years. The use of polymers is one of the effective methods to achieve the goals of green tribology. These goals are closely related to the creative heritage of Vladimir Belyi in the tribology of polymers, in particular, studies of friction mass transfer. In continuation of his work, it is shown that nanofillers actively affect the behavior of polymer macromolecules during friction, the formation of transfer films and wear particles. Using PEEK-based composites as an example, the effectiveness of materials with nanosized and traditional additives is confirmed. Another direction of green tribology is the development of environmental-friendly lubricants. Currently, many countries are restricting the use of mineral oils in agriculture and forestry, encouraging the use of lubricating oils and fluids made from vegetable raw materials. It is shown that such oils are not inferior to mineral oils in many respects and exhibit good anti-wear properties due to the formation of tribopolymer films.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Development and Polymer Tribology\",\"authors\":\"N. K. Myshkin, A. Ya. Grigoriev, Ga Zhang\",\"doi\":\"10.3103/S1068366622060113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of sustainable development provides for the achievement of 17 goals formulated in 2015 by the UN General Assembly. Tribology is one of the factors for their achievement in the field of industry and innovation (Sustainable Development Goal 9 or SDG 9). Losses associated with friction and wear of machines are estimated at 3–5% of the gross national product. About a quarter of the energy consumed by industry is spent on overcoming frictional forces. Reducing friction losses, wear of machines, emissions from internal combustion engines (ICEs), using environmental-friendly lubricants are just a small list of tribology’s opportunities to achieve sustainable development goals. Applications of tribology have gone far beyond the solution of purely technical problems, and so-called green tribology has begun to play a special role in public life in recent years. The use of polymers is one of the effective methods to achieve the goals of green tribology. These goals are closely related to the creative heritage of Vladimir Belyi in the tribology of polymers, in particular, studies of friction mass transfer. In continuation of his work, it is shown that nanofillers actively affect the behavior of polymer macromolecules during friction, the formation of transfer films and wear particles. Using PEEK-based composites as an example, the effectiveness of materials with nanosized and traditional additives is confirmed. Another direction of green tribology is the development of environmental-friendly lubricants. Currently, many countries are restricting the use of mineral oils in agriculture and forestry, encouraging the use of lubricating oils and fluids made from vegetable raw materials. It is shown that such oils are not inferior to mineral oils in many respects and exhibit good anti-wear properties due to the formation of tribopolymer films.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366622060113\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366622060113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The concept of sustainable development provides for the achievement of 17 goals formulated in 2015 by the UN General Assembly. Tribology is one of the factors for their achievement in the field of industry and innovation (Sustainable Development Goal 9 or SDG 9). Losses associated with friction and wear of machines are estimated at 3–5% of the gross national product. About a quarter of the energy consumed by industry is spent on overcoming frictional forces. Reducing friction losses, wear of machines, emissions from internal combustion engines (ICEs), using environmental-friendly lubricants are just a small list of tribology’s opportunities to achieve sustainable development goals. Applications of tribology have gone far beyond the solution of purely technical problems, and so-called green tribology has begun to play a special role in public life in recent years. The use of polymers is one of the effective methods to achieve the goals of green tribology. These goals are closely related to the creative heritage of Vladimir Belyi in the tribology of polymers, in particular, studies of friction mass transfer. In continuation of his work, it is shown that nanofillers actively affect the behavior of polymer macromolecules during friction, the formation of transfer films and wear particles. Using PEEK-based composites as an example, the effectiveness of materials with nanosized and traditional additives is confirmed. Another direction of green tribology is the development of environmental-friendly lubricants. Currently, many countries are restricting the use of mineral oils in agriculture and forestry, encouraging the use of lubricating oils and fluids made from vegetable raw materials. It is shown that such oils are not inferior to mineral oils in many respects and exhibit good anti-wear properties due to the formation of tribopolymer films.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.