{"title":"鲨鱼皮花纹表面抗菌和防生物污垢性能的演变","authors":"S. Rostami, B. Garipcan","doi":"10.1680/jsuin.21.00055","DOIUrl":null,"url":null,"abstract":"Sharks possess numerous biological features such as highly developed senses and efficient liver that have stunned researchers over the past few decades. Including to those, sharks are well known for the ability of their skin to reduce drag force, and prevent adhesion of microorganisms like bacteria. Recently, investigating the anti-biofouling properties of sharkskin and particularly the mechanism of antibacterial activities have been trending and ongoing researches have been conducted to understand the extent of the anti-biofouling and identification of the possible underlying mechanisms. Hence, in this review, we take a look at sharkskin morphology and discoveries thus far regarding its unique attributes and their underlying mechanisms along with possible applications such as cathaters, implantable cardiovascular devices, and medical devices. The focus of this review is the anti-biofouling properties of sharkskin patterned surfaces prepared by biomimicked and bioinspired approaches in healthcare applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The evolution of anti-bacterial and anti-biofouling properties of sharkskin patterned surfaces\",\"authors\":\"S. Rostami, B. Garipcan\",\"doi\":\"10.1680/jsuin.21.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sharks possess numerous biological features such as highly developed senses and efficient liver that have stunned researchers over the past few decades. Including to those, sharks are well known for the ability of their skin to reduce drag force, and prevent adhesion of microorganisms like bacteria. Recently, investigating the anti-biofouling properties of sharkskin and particularly the mechanism of antibacterial activities have been trending and ongoing researches have been conducted to understand the extent of the anti-biofouling and identification of the possible underlying mechanisms. Hence, in this review, we take a look at sharkskin morphology and discoveries thus far regarding its unique attributes and their underlying mechanisms along with possible applications such as cathaters, implantable cardiovascular devices, and medical devices. The focus of this review is the anti-biofouling properties of sharkskin patterned surfaces prepared by biomimicked and bioinspired approaches in healthcare applications.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.21.00055\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.21.00055","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The evolution of anti-bacterial and anti-biofouling properties of sharkskin patterned surfaces
Sharks possess numerous biological features such as highly developed senses and efficient liver that have stunned researchers over the past few decades. Including to those, sharks are well known for the ability of their skin to reduce drag force, and prevent adhesion of microorganisms like bacteria. Recently, investigating the anti-biofouling properties of sharkskin and particularly the mechanism of antibacterial activities have been trending and ongoing researches have been conducted to understand the extent of the anti-biofouling and identification of the possible underlying mechanisms. Hence, in this review, we take a look at sharkskin morphology and discoveries thus far regarding its unique attributes and their underlying mechanisms along with possible applications such as cathaters, implantable cardiovascular devices, and medical devices. The focus of this review is the anti-biofouling properties of sharkskin patterned surfaces prepared by biomimicked and bioinspired approaches in healthcare applications.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.