开发和部署周期性局灶肌肉振动系统,以改善多发性硬化症患者的行走性能

E. Hardin, S. N. Bailey, R. Kobetic, Lisa M Lombardo, Kevin M. Foglyano, John R. Schnellenberger, S. Selkirk
{"title":"开发和部署周期性局灶肌肉振动系统,以改善多发性硬化症患者的行走性能","authors":"E. Hardin, S. N. Bailey, R. Kobetic, Lisa M Lombardo, Kevin M. Foglyano, John R. Schnellenberger, S. Selkirk","doi":"10.1080/03091902.2022.2080880","DOIUrl":null,"url":null,"abstract":"Abstract Vibration, a potent mechanical stimulus for activating muscle spindle primary afferents, may improve gait performance in persons with multiple sclerosis (MS), but has yet to be developed and deployed for multiple leg muscles with application during walking training. This study explored the development of a cyclic focal muscle vibration (FMV) system, and the deployment feasibility to correct MS walking swing phase deficits in order to determine whether this intervention warrants comprehensive study. The system was deployed during twelve, two-hour sessions of walking with cyclic FMV over six weeks. Participants served as their own control. Blood pressure, heart rate, walking speed, kinematics (peak hip, knee and ankle angles during swing), toe clearance, and step length were measured before and after deployment with blood pressure and heart rate monitored during deployment. During system deployment, there were no untoward sensations and physiological changes in blood pressure and heart rate, and volitional improvements were found in walking speed, improved swing phase kinematics, toe clearance and step length. This FMV training system was developed and deployed to improve joint flexion during walking in those with MS, and it demonstrated feasibility and benefits. Further study will determine the most effective vibration frequency and dose, carryover effects, and those most likely to benefit from this intervention.","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and deployment of cyclical focal muscle vibration system to improve walking performance in multiple sclerosis\",\"authors\":\"E. Hardin, S. N. Bailey, R. Kobetic, Lisa M Lombardo, Kevin M. Foglyano, John R. Schnellenberger, S. Selkirk\",\"doi\":\"10.1080/03091902.2022.2080880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Vibration, a potent mechanical stimulus for activating muscle spindle primary afferents, may improve gait performance in persons with multiple sclerosis (MS), but has yet to be developed and deployed for multiple leg muscles with application during walking training. This study explored the development of a cyclic focal muscle vibration (FMV) system, and the deployment feasibility to correct MS walking swing phase deficits in order to determine whether this intervention warrants comprehensive study. The system was deployed during twelve, two-hour sessions of walking with cyclic FMV over six weeks. Participants served as their own control. Blood pressure, heart rate, walking speed, kinematics (peak hip, knee and ankle angles during swing), toe clearance, and step length were measured before and after deployment with blood pressure and heart rate monitored during deployment. During system deployment, there were no untoward sensations and physiological changes in blood pressure and heart rate, and volitional improvements were found in walking speed, improved swing phase kinematics, toe clearance and step length. This FMV training system was developed and deployed to improve joint flexion during walking in those with MS, and it demonstrated feasibility and benefits. Further study will determine the most effective vibration frequency and dose, carryover effects, and those most likely to benefit from this intervention.\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2022.2080880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2022.2080880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要振动是激活肌梭初级传入的有力机械刺激,可以改善多发性硬化症(MS)患者的步态表现,但尚未开发和应用于行走训练中的多条腿肌肉。本研究探讨了周期性局灶性肌肉振动(FMV)系统的开发,以及纠正MS行走摆动相位缺陷的部署可行性,以确定这种干预措施是否值得全面研究。该系统在六周内使用周期性FMV进行了12次两小时的步行。参与者充当自己的控制者。在展开前后测量血压、心率、步行速度、运动学(挥杆时髋关节、膝盖和脚踝的峰值角度)、脚趾间隙和步长,并在展开期间监测血压和心率。在系统部署过程中,血压和心率没有出现任何不良感觉和生理变化,行走速度、摆动阶段运动学、脚趾间隙和步长都有所改善。该FMV训练系统是为了改善多发性硬化症患者行走过程中的关节屈曲而开发和部署的,它证明了其可行性和益处。进一步的研究将确定最有效的振动频率和剂量、遗留效应以及最有可能从这种干预中受益的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and deployment of cyclical focal muscle vibration system to improve walking performance in multiple sclerosis
Abstract Vibration, a potent mechanical stimulus for activating muscle spindle primary afferents, may improve gait performance in persons with multiple sclerosis (MS), but has yet to be developed and deployed for multiple leg muscles with application during walking training. This study explored the development of a cyclic focal muscle vibration (FMV) system, and the deployment feasibility to correct MS walking swing phase deficits in order to determine whether this intervention warrants comprehensive study. The system was deployed during twelve, two-hour sessions of walking with cyclic FMV over six weeks. Participants served as their own control. Blood pressure, heart rate, walking speed, kinematics (peak hip, knee and ankle angles during swing), toe clearance, and step length were measured before and after deployment with blood pressure and heart rate monitored during deployment. During system deployment, there were no untoward sensations and physiological changes in blood pressure and heart rate, and volitional improvements were found in walking speed, improved swing phase kinematics, toe clearance and step length. This FMV training system was developed and deployed to improve joint flexion during walking in those with MS, and it demonstrated feasibility and benefits. Further study will determine the most effective vibration frequency and dose, carryover effects, and those most likely to benefit from this intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
期刊最新文献
News and product update. Safety, feasibility, and acceptability of a novel device to monitor ischaemic stroke patients. An enhanced Garter Snake Optimization-assisted deep learning model for lung cancer segmentation and classification using CT images. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. Characterisation of pulmonary air leak measurements using a mechanical ventilator in a bench setup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1