描述可居住行星的前景

IF 1.3 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Comptes Rendus Physique Pub Date : 2023-04-23 DOI:10.5802/crphys.154
Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere
{"title":"描述可居住行星的前景","authors":"Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere","doi":"10.5802/crphys.154","DOIUrl":null,"url":null,"abstract":"With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for the characterization of habitable planets\",\"authors\":\"Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere\",\"doi\":\"10.5802/crphys.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.154\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.154","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

现在已经发现了数千颗系外行星,可居住行星的特征和潜在的可居住行星的识别是未来几十年的主要挑战。我们回顾了目前可居住行星的工作定义,即将到来的观测前景,并提出了一种评估可居住性和可居住性的创新方法。该方法首次将大气和室内模拟与基于生态系统模拟的生物活性相结合。本文回顾了该方法在土卫二、原始地球和原始火星上评估甲烷生成可能性和影响的首次应用。通过这些在太阳系可居住性和可居住性受到质疑的情况下的应用,我们展示了如何使用该方法通过考虑类地系外行星围绕类太阳恒星的可居住性和可居住性来为未来空间天文台的设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospects for the characterization of habitable planets
With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Physique
Comptes Rendus Physique 物理-天文与天体物理
CiteScore
2.80
自引率
0.00%
发文量
13
审稿时长
17.2 weeks
期刊介绍: The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity. From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication. The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.
期刊最新文献
Vibrations and Heat Transfer in Glasses: The Role Played by Disorder Astronomy, Atmospheres and Refraction: Foreword Detection of exoplanets: exploiting each property of light Organic Glass-Forming Liquids and the Concept of Fragility Hunting for Cold Exoplanets via Microlensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1