ToSPACE和CHECWORKS程序FAC分析结果与实验结果的比较

K. Hwang, Hun Yun, Hyukki Seo, E. Jung, J. Im, K. M. Kim, D. J. Kim
{"title":"ToSPACE和CHECWORKS程序FAC分析结果与实验结果的比较","authors":"K. Hwang, Hun Yun, Hyukki Seo, E. Jung, J. Im, K. M. Kim, D. J. Kim","doi":"10.4236/wjnst.2020.104014","DOIUrl":null,"url":null,"abstract":"A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE’s capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between FAC Analysis Result Using ToSPACE & CHECWORKS Programs and Experimental Result\",\"authors\":\"K. Hwang, Hun Yun, Hyukki Seo, E. Jung, J. Im, K. M. Kim, D. J. Kim\",\"doi\":\"10.4236/wjnst.2020.104014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE’s capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.\",\"PeriodicalId\":61566,\"journal\":{\"name\":\"核科学与技术国际期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核科学与技术国际期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/wjnst.2020.104014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核科学与技术国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjnst.2020.104014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核电站二次系统中的许多管道部件已暴露于老化机制中,如FAC(流动加速腐蚀)、空化、闪蒸、LDIE(液滴冲击侵蚀)和SPE(固体颗粒侵蚀)。这些机制可能导致部件变薄、泄漏或破裂。由于1986年Surry第二单元和2004年Mihama第三单元的减壁导致管道破裂,管道减壁管理已成为核工业中最重要的问题之一。为了应对FAC和侵蚀导致的管道壁薄,KEPCO-E&C开发了ToSPACE程序。它可以预测FAC和侵蚀现象,也可以用于管道壁薄化管理工作,如敏感性分析、UT(超声波检测)数据评估以及制定长期检测计划。尽管ToSPACE可以预测上述五种老化机制,但本文仅将使用ToSPACE的FAC预测结果与使用FACTS(Flow Accelerated Corrosion Test System)的实验结果进行了比较,以验证ToSPACE。此外,还将ToSPACE的FAC预测结果与世界各地广泛使用的CHECWORKS的预测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between FAC Analysis Result Using ToSPACE & CHECWORKS Programs and Experimental Result
A number of piping components in the secondary system of nuclear power plants (NPPs) have been exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, LDIE (Liquid Droplet Impingement Erosion), and SPE (Solid Particle Erosion). Those mechanisms may lead to thinning, leaking, or the rupture of components. Due to the pipe ruptures caused by wall thinning of Surry Unit 2 in 1986 and Mihama Unit 3 in 2004, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage the wall thinning of pipes caused by FAC and erosion, KEPCO-E & C has developed ToSPACE program. It can predict both FAC & erosion phenomena, and also be utilized in the pipe wall thinning management works such as susceptibility analysis, UT (Ultrasonic Test) data evaluation as well as establishment of long-term inspection plan. Even though the ToSPACE can predict the five aging mechanisms mentioned above, only the FAC prediction result using ToSPACE was compared herein with the experimental result using FACTS (Flow Accelerated Corrosion Test System) to verify the ToSPACE’s capability. In addition, the FAC prediction result using ToSPACE was also compared with that of CHECWORKS that is widely used all over the world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
198
期刊最新文献
System Variables Design of Safety Analysis for Fast Reactors Numerical Analysis of Heating Technique in Corium Melt Pool Convection Flow Field & Thermal Interaction in a Volumetrically Heated Molten Pool Feasibility to Convert the NuScale SMR from UO2 to a Mixed (U, Th)O2 Core: A Parametric Study of Fuel Element—Seed-Blanket Concept Cause Analysis for Wall Thinning of Small-Bore Piping in Nuclear Power Plant by ToSPACE, FLUENT and Theoretical Evaluation The Systematics Study of (n, p) Reaction Cross-Sections at 14.7 MeV Neutron Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1