极性化合物内聚因子模型的新推广:Peng-Robinson状态方程

IF 1.4 Q3 CHEMISTRY, MULTIDISCIPLINARY Physical Chemistry Research Pub Date : 2020-06-01 DOI:10.22036/PCR.2020.196847.1657
M. Joshipura, N. Shah, Sudir Dabke
{"title":"极性化合物内聚因子模型的新推广:Peng-Robinson状态方程","authors":"M. Joshipura, N. Shah, Sudir Dabke","doi":"10.22036/PCR.2020.196847.1657","DOIUrl":null,"url":null,"abstract":"Predicting physical properties is one of the major requirements in process engineering. Equations of state (EoS) are widely used for predicting physical properties. Among many EoS, cubic equations of state (cubic EoS) are being used because they are simple and applicable over a wide range of temperature and pressure. However, these cubic EoS fail to predict properties of a compound having polarity, association as well as hydrogen bonding. In the present study a new generalization for cohesion factor, to be used with Peng-Robinson (PR) EoS was proposed. In developing the model, compound-specific parameters for nearly 300 compounds were generated. These compound-specific parameters were correlated in terms of the reduced dipole moment and critical compressibility factor. Proposed models were compared with models available in the literature. Vapor pressure, heat of vaporization, saturated liquid density and second virial coefficient of the compounds were predicted. It was observed that the models with reduced dipole predicted various properties accurately for highly polar compounds without losing accuracy in predicting properties for non-polar compounds.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"8 1","pages":"355-364"},"PeriodicalIF":1.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Generalization of Cohesion Factor Model for Polar Compounds: Peng-Robinson Equation of State\",\"authors\":\"M. Joshipura, N. Shah, Sudir Dabke\",\"doi\":\"10.22036/PCR.2020.196847.1657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting physical properties is one of the major requirements in process engineering. Equations of state (EoS) are widely used for predicting physical properties. Among many EoS, cubic equations of state (cubic EoS) are being used because they are simple and applicable over a wide range of temperature and pressure. However, these cubic EoS fail to predict properties of a compound having polarity, association as well as hydrogen bonding. In the present study a new generalization for cohesion factor, to be used with Peng-Robinson (PR) EoS was proposed. In developing the model, compound-specific parameters for nearly 300 compounds were generated. These compound-specific parameters were correlated in terms of the reduced dipole moment and critical compressibility factor. Proposed models were compared with models available in the literature. Vapor pressure, heat of vaporization, saturated liquid density and second virial coefficient of the compounds were predicted. It was observed that the models with reduced dipole predicted various properties accurately for highly polar compounds without losing accuracy in predicting properties for non-polar compounds.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"8 1\",\"pages\":\"355-364\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.196847.1657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.196847.1657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

预测物理性质是过程工程的主要要求之一。状态方程(EoS)被广泛用于预测物理性质。在许多状态方程中,立方状态方程(cubic equation of state,简称cubic EoS)因其简单且适用于广泛的温度和压力范围而被广泛使用。然而,这些立方方程不能预测具有极性、缔合和氢键的化合物的性质。本文提出了一种适用于Peng-Robinson (PR)方程的内聚因子的新概化方法。在开发模型的过程中,生成了近300种化合物的特定参数。这些化合物的特定参数与约简偶极矩和临界压缩系数相关。将提出的模型与文献中现有的模型进行比较。对化合物的蒸汽压、汽化热、饱和液体密度和第二维里系数进行了预测。结果表明,偶极子化简后的模型能准确预测高极性化合物的各种性质,而对非极性化合物的预测精度不降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Generalization of Cohesion Factor Model for Polar Compounds: Peng-Robinson Equation of State
Predicting physical properties is one of the major requirements in process engineering. Equations of state (EoS) are widely used for predicting physical properties. Among many EoS, cubic equations of state (cubic EoS) are being used because they are simple and applicable over a wide range of temperature and pressure. However, these cubic EoS fail to predict properties of a compound having polarity, association as well as hydrogen bonding. In the present study a new generalization for cohesion factor, to be used with Peng-Robinson (PR) EoS was proposed. In developing the model, compound-specific parameters for nearly 300 compounds were generated. These compound-specific parameters were correlated in terms of the reduced dipole moment and critical compressibility factor. Proposed models were compared with models available in the literature. Vapor pressure, heat of vaporization, saturated liquid density and second virial coefficient of the compounds were predicted. It was observed that the models with reduced dipole predicted various properties accurately for highly polar compounds without losing accuracy in predicting properties for non-polar compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Research
Physical Chemistry Research CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
8.30%
发文量
18
期刊介绍: The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.
期刊最新文献
Quality Parameters, Empirical and Kinetic Models of Lycopene and Beta-carotene Bioformation in Tomatoes (Solanum lycopersicum) Graphene Oxide/Activated Clay/Gelatin Composites: Synthesis, Characterization and Properties Effect of Polarity on the Interaction Energies of some Organic Solvent (OS)-Water System and Formation of Donor-acceptor Complex: Quantum Mechanical MP4 Study Effect of Temperature and Electrode Thickness on the Performance of Dye-Sensitized Solar Cells Optimization of the Oxidative Desulfurization Process of Light Cycle Oil with NiMo/γ Al2O3 Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1