基于无线电信号的不平衡分类时频语义GAN框架

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2023-08-08 DOI:10.1145/3614096
Peng Liao, Xuyu Wang, Lin An, Shiwen Mao, Tianya Zhao, Chao Yang
{"title":"基于无线电信号的不平衡分类时频语义GAN框架","authors":"Peng Liao, Xuyu Wang, Lin An, Shiwen Mao, Tianya Zhao, Chao Yang","doi":"10.1145/3614096","DOIUrl":null,"url":null,"abstract":"Recently, wireless sensing techniques have been widely used for Internet of Things (IoT) applications. Unlike traditional device-based sensing, wireless sensing is contactless, pervasive, low-cost, and non-invasive, making it highly suitable for relevant IoT applications. However, most existing methods are highly dependent on high-quality datasets, and the minority class will not achieve a satisfactory performance when suffering from a class imbalance problem. In this paper, we propose a time-frequency semantic generative adversarial network (GAN) framework (i.e., TFSemantic) to address the imbalanced classification problem in human activity recognition (HAR) using radio frequency (RF) signals. Specifically, the TFSemantic framework can learn semantic features from the minority classes and then generate high-quality signals to restore data balance. It includes a data pre-processing module, a semantic extraction module, a semantic distribution module, and a data augmenter module. In the data pre-processing module, we process four different RF datasets (i.e., WiFi, RFID, UWB, and mmWave). We also develop Fourier semantic feature convolution (SFC) and attention semantic feature embedding (SFE) methods for the semantic extraction module. A discrete wavelet transform (DWT) is utilized for reconstructed RF samples in the semantic distribution module. In data augmenter module, we design an associated loss function to achieve effective adversarial training. Finally, we validate the effectiveness of the proposed TFSemantic framework using different RF datasets, which outperforms several state-of-the-art methods.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TFSemantic: A Time-Frequency Semantic GAN Framework for Imbalanced Classification Using Radio Signals\",\"authors\":\"Peng Liao, Xuyu Wang, Lin An, Shiwen Mao, Tianya Zhao, Chao Yang\",\"doi\":\"10.1145/3614096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, wireless sensing techniques have been widely used for Internet of Things (IoT) applications. Unlike traditional device-based sensing, wireless sensing is contactless, pervasive, low-cost, and non-invasive, making it highly suitable for relevant IoT applications. However, most existing methods are highly dependent on high-quality datasets, and the minority class will not achieve a satisfactory performance when suffering from a class imbalance problem. In this paper, we propose a time-frequency semantic generative adversarial network (GAN) framework (i.e., TFSemantic) to address the imbalanced classification problem in human activity recognition (HAR) using radio frequency (RF) signals. Specifically, the TFSemantic framework can learn semantic features from the minority classes and then generate high-quality signals to restore data balance. It includes a data pre-processing module, a semantic extraction module, a semantic distribution module, and a data augmenter module. In the data pre-processing module, we process four different RF datasets (i.e., WiFi, RFID, UWB, and mmWave). We also develop Fourier semantic feature convolution (SFC) and attention semantic feature embedding (SFE) methods for the semantic extraction module. A discrete wavelet transform (DWT) is utilized for reconstructed RF samples in the semantic distribution module. In data augmenter module, we design an associated loss function to achieve effective adversarial training. Finally, we validate the effectiveness of the proposed TFSemantic framework using different RF datasets, which outperforms several state-of-the-art methods.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3614096\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3614096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,无线传感技术已被广泛用于物联网(IoT)应用。与传统的基于设备的传感不同,无线传感具有非接触、普及、低成本和非侵入性,非常适合相关的物联网应用。然而,大多数现有的方法都高度依赖于高质量的数据集,少数类在遇到类不平衡问题时不会获得令人满意的性能。在本文中,我们提出了一种时频语义生成对抗性网络(GAN)框架(即TFSemantic),以解决使用射频(RF)信号的人类活动识别(HAR)中的不平衡分类问题。具体来说,TFSemantic框架可以从少数类中学习语义特征,然后生成高质量的信号来恢复数据平衡。它包括数据预处理模块、语义提取模块、语义分发模块和数据扩充模块。在数据预处理模块中,我们处理四个不同的RF数据集(即WiFi、RFID、UWB和毫米波)。我们还为语义提取模块开发了傅立叶语义特征卷积(SFC)和注意力语义特征嵌入(SFE)方法。离散小波变换(DWT)用于语义分布模块中的重构RF样本。在数据增强模块中,我们设计了一个相关的损失函数来实现有效的对抗性训练。最后,我们使用不同的RF数据集验证了所提出的TFSemantic框架的有效性,它优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TFSemantic: A Time-Frequency Semantic GAN Framework for Imbalanced Classification Using Radio Signals
Recently, wireless sensing techniques have been widely used for Internet of Things (IoT) applications. Unlike traditional device-based sensing, wireless sensing is contactless, pervasive, low-cost, and non-invasive, making it highly suitable for relevant IoT applications. However, most existing methods are highly dependent on high-quality datasets, and the minority class will not achieve a satisfactory performance when suffering from a class imbalance problem. In this paper, we propose a time-frequency semantic generative adversarial network (GAN) framework (i.e., TFSemantic) to address the imbalanced classification problem in human activity recognition (HAR) using radio frequency (RF) signals. Specifically, the TFSemantic framework can learn semantic features from the minority classes and then generate high-quality signals to restore data balance. It includes a data pre-processing module, a semantic extraction module, a semantic distribution module, and a data augmenter module. In the data pre-processing module, we process four different RF datasets (i.e., WiFi, RFID, UWB, and mmWave). We also develop Fourier semantic feature convolution (SFC) and attention semantic feature embedding (SFE) methods for the semantic extraction module. A discrete wavelet transform (DWT) is utilized for reconstructed RF samples in the semantic distribution module. In data augmenter module, we design an associated loss function to achieve effective adversarial training. Finally, we validate the effectiveness of the proposed TFSemantic framework using different RF datasets, which outperforms several state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1