走向虚拟手术计划:改良的Blalock Taussig Shunt

IF 1.1 Q4 BIOPHYSICS AIMS Biophysics Pub Date : 2020-06-03 DOI:10.3934/biophy.2020014
Stephen J. Haller, R. Gerrah, S. Rugonyi
{"title":"走向虚拟手术计划:改良的Blalock Taussig Shunt","authors":"Stephen J. Haller, R. Gerrah, S. Rugonyi","doi":"10.3934/biophy.2020014","DOIUrl":null,"url":null,"abstract":"A modified Blalock-Taussig shunt (MBTS) is an aortopulmonary shunt to establish or augment pulmonary perfusion in congenital cardiac defects with limited pulmonary blood flow. Proper function of this shunt is of utmost importance. In clinical practice, prediction of flow in an MBTS relies on previous experience. In the research field, computational modeling techniques have been developed to simulate flow in an MBTS and predict its performance. These techniques are promising but also time consuming and prone to uncertainties; therefore not yet suitable for clinical practice. Here we present a simplified, patient-based computational model to predict mean circulatory flow characteristics after MBTS insertion. Simulations performed over a range of pulmonary vascular resistances, were compared to data from: i) previous modeling studies; ii) data from the specific patient modeled, and iii) a cohort of patients with MBTS. Model predictions were within one standard deviation from cohort data; and within 1% from results of previous (more complex) computational models. In comparison to previous studies, our model is computationally stable with significantly shorter computational time to perform simulations. We envision that our approach could be used in the future to perform virtual surgeries, quickly testing different surgical scenarios using the patient own geometrical and physiological characteristics, to aid surgeons in decision making.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards virtual surgery planning: the modified Blalock-Taussig Shunt\",\"authors\":\"Stephen J. Haller, R. Gerrah, S. Rugonyi\",\"doi\":\"10.3934/biophy.2020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified Blalock-Taussig shunt (MBTS) is an aortopulmonary shunt to establish or augment pulmonary perfusion in congenital cardiac defects with limited pulmonary blood flow. Proper function of this shunt is of utmost importance. In clinical practice, prediction of flow in an MBTS relies on previous experience. In the research field, computational modeling techniques have been developed to simulate flow in an MBTS and predict its performance. These techniques are promising but also time consuming and prone to uncertainties; therefore not yet suitable for clinical practice. Here we present a simplified, patient-based computational model to predict mean circulatory flow characteristics after MBTS insertion. Simulations performed over a range of pulmonary vascular resistances, were compared to data from: i) previous modeling studies; ii) data from the specific patient modeled, and iii) a cohort of patients with MBTS. Model predictions were within one standard deviation from cohort data; and within 1% from results of previous (more complex) computational models. In comparison to previous studies, our model is computationally stable with significantly shorter computational time to perform simulations. We envision that our approach could be used in the future to perform virtual surgeries, quickly testing different surgical scenarios using the patient own geometrical and physiological characteristics, to aid surgeons in decision making.\",\"PeriodicalId\":7529,\"journal\":{\"name\":\"AIMS Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/biophy.2020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

改良的Blalock-Taussig分流(MBTS)是一种主动脉-肺动脉分流,用于在肺血流量有限的先天性心脏缺陷中建立或增加肺灌注。这种分流器的正确功能至关重要。在临床实践中,MBTS中流量的预测依赖于以前的经验。在研究领域,已经开发了计算建模技术来模拟MBTS中的流动并预测其性能。这些技术很有前景,但也很耗时,而且容易产生不确定性;因此还不适合临床实践。在这里,我们提出了一个简化的、基于患者的计算模型来预测MBTS插入后的平均循环流量特征。将对一系列肺血管阻力进行的模拟与以下数据进行比较:i)先前的建模研究;ii)来自所建模的特定患者的数据,以及iii)患有MBTS的患者队列。模型预测与队列数据的偏差在一个标准差以内;并且与先前(更复杂的)计算模型的结果相差在1%以内。与之前的研究相比,我们的模型在计算上是稳定的,执行模拟的计算时间明显更短。我们设想,我们的方法将来可以用于进行虚拟手术,利用患者自身的几何和生理特征快速测试不同的手术场景,以帮助外科医生做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards virtual surgery planning: the modified Blalock-Taussig Shunt
A modified Blalock-Taussig shunt (MBTS) is an aortopulmonary shunt to establish or augment pulmonary perfusion in congenital cardiac defects with limited pulmonary blood flow. Proper function of this shunt is of utmost importance. In clinical practice, prediction of flow in an MBTS relies on previous experience. In the research field, computational modeling techniques have been developed to simulate flow in an MBTS and predict its performance. These techniques are promising but also time consuming and prone to uncertainties; therefore not yet suitable for clinical practice. Here we present a simplified, patient-based computational model to predict mean circulatory flow characteristics after MBTS insertion. Simulations performed over a range of pulmonary vascular resistances, were compared to data from: i) previous modeling studies; ii) data from the specific patient modeled, and iii) a cohort of patients with MBTS. Model predictions were within one standard deviation from cohort data; and within 1% from results of previous (more complex) computational models. In comparison to previous studies, our model is computationally stable with significantly shorter computational time to perform simulations. We envision that our approach could be used in the future to perform virtual surgeries, quickly testing different surgical scenarios using the patient own geometrical and physiological characteristics, to aid surgeons in decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
期刊最新文献
Endoplasmic reticulum localization of phosphoinositide specific phospholipase C enzymes in U73122 cultured human osteoblasts Identification of potential SARS-CoV-2 papain-like protease inhibitors with the ability to interact with the catalytic triad Predicting factors and top gene identification for survival data of breast cancer A review of molecular biology detection methods for human adenovirus Natural bond orbital analysis of dication magnesium complexes [Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; n=1-4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1