时间进程RNA测序和共表达模块揭示了苹果的关键盐反应调控网络

IF 1.2 4区 农林科学 Q3 HORTICULTURE Journal of the American Society for Horticultural Science Pub Date : 2023-03-01 DOI:10.21273/jashs05270-22
Xin Huang, Meiling Zhang, Liping Wang, Xuyao Zhang, Ruigang Wu, Fei Shen
{"title":"时间进程RNA测序和共表达模块揭示了苹果的关键盐反应调控网络","authors":"Xin Huang, Meiling Zhang, Liping Wang, Xuyao Zhang, Ruigang Wu, Fei Shen","doi":"10.21273/jashs05270-22","DOIUrl":null,"url":null,"abstract":"As one of the most important fruit tree crops, apple (Malus ×domestica), is faced with the serious impact of soil salinization. However, the underlying genetic and regulatory network remains elusive. Here, we adopted time-course RNA sequencing to decipher the genetic basis and regulatory module of apple in response to salt stress. Among a series of intense changes in genes at each time point, the critical genes in the mitogen-activated protein kinase signaling pathway were highly consistent with the duration of the stress treatment. Moreover, Salt Overly Sensitive 1 (SOS1) genes were identified and predicted to play important roles in the response process. We constructed coexpression modules and explored modules significantly associated with stress. SOS genes were identified in the hub genes, suggesting a critical role. Interestingly, transcription factors were also identified and predicted to cointeract with SOS genes in the hub genes of the coexpression module [e.g., HB7 (MD01G1226600), WRKY33 (MD12G1181000), and ERF106 (MD07G1248700)]. Collectively, our exploration and findings provide a reference and data resource for the study of genetic and salt regulatory networks in apple.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-course RNA-sequencing and Co-expression Modules Revealed a Critical Salt Response Regulatory Network in Apple\",\"authors\":\"Xin Huang, Meiling Zhang, Liping Wang, Xuyao Zhang, Ruigang Wu, Fei Shen\",\"doi\":\"10.21273/jashs05270-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most important fruit tree crops, apple (Malus ×domestica), is faced with the serious impact of soil salinization. However, the underlying genetic and regulatory network remains elusive. Here, we adopted time-course RNA sequencing to decipher the genetic basis and regulatory module of apple in response to salt stress. Among a series of intense changes in genes at each time point, the critical genes in the mitogen-activated protein kinase signaling pathway were highly consistent with the duration of the stress treatment. Moreover, Salt Overly Sensitive 1 (SOS1) genes were identified and predicted to play important roles in the response process. We constructed coexpression modules and explored modules significantly associated with stress. SOS genes were identified in the hub genes, suggesting a critical role. Interestingly, transcription factors were also identified and predicted to cointeract with SOS genes in the hub genes of the coexpression module [e.g., HB7 (MD01G1226600), WRKY33 (MD12G1181000), and ERF106 (MD07G1248700)]. Collectively, our exploration and findings provide a reference and data resource for the study of genetic and salt regulatory networks in apple.\",\"PeriodicalId\":17226,\"journal\":{\"name\":\"Journal of the American Society for Horticultural Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/jashs05270-22\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05270-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

苹果(Malus ×domestica)作为最重要的果树作物之一,面临着土壤盐碱化的严重影响。然而,潜在的遗传和调控网络仍然难以捉摸。本研究采用时程RNA测序方法,分析了苹果对盐胁迫的遗传基础和调控模块。在各时间点一系列基因的剧烈变化中,丝裂原活化蛋白激酶信号通路的关键基因与胁迫处理时间高度一致。此外,盐过度敏感1 (SOS1)基因被鉴定并预测在反应过程中发挥重要作用。我们构建了共表达模块,并探索了与压力显著相关的模块。在中心基因中发现了SOS基因,表明其具有关键作用。有趣的是,转录因子也被发现并预测与共表达模块枢纽基因中的SOS基因共作用[例如HB7 (MD01G1226600), WRKY33 (MD12G1181000)和ERF106 (MD07G1248700)]。本研究为苹果遗传和盐调控网络的研究提供了参考和数据资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-course RNA-sequencing and Co-expression Modules Revealed a Critical Salt Response Regulatory Network in Apple
As one of the most important fruit tree crops, apple (Malus ×domestica), is faced with the serious impact of soil salinization. However, the underlying genetic and regulatory network remains elusive. Here, we adopted time-course RNA sequencing to decipher the genetic basis and regulatory module of apple in response to salt stress. Among a series of intense changes in genes at each time point, the critical genes in the mitogen-activated protein kinase signaling pathway were highly consistent with the duration of the stress treatment. Moreover, Salt Overly Sensitive 1 (SOS1) genes were identified and predicted to play important roles in the response process. We constructed coexpression modules and explored modules significantly associated with stress. SOS genes were identified in the hub genes, suggesting a critical role. Interestingly, transcription factors were also identified and predicted to cointeract with SOS genes in the hub genes of the coexpression module [e.g., HB7 (MD01G1226600), WRKY33 (MD12G1181000), and ERF106 (MD07G1248700)]. Collectively, our exploration and findings provide a reference and data resource for the study of genetic and salt regulatory networks in apple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
期刊最新文献
Arteriovenous fistula creation with VasQTM device: A feasibility study to reveal hemodynamic implications. Far-red Photons Increase Light Capture but Have Lower Photosynthetic Capacity Than Red Photons Miracle Fruit Pulp Transcriptomes Identify Genetic Variants in Support of Discovery Research and Breeding Difference in Kernel Shape and Endocarp Anatomy Promote Dehiscence in Pistachio Endocarp Genetic Diversity of New Almond Accessions from Central Asian and Cold-adapted North American Germplasm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1