{"title":"高精度复合航天器天线反射器生产周期的研究与优化","authors":"N. A. Berdnikova, O. Belov, А. V. Lopatin","doi":"10.26732/2618-7957-2019-2-59-72","DOIUrl":null,"url":null,"abstract":"The article presents a finite element model of CFRP (carbon fiber reinforcement material) reflector polymerization in autoclave for prediction of its shape after removing from the tool. The simulation was performed in the FEM software environment. The technique has developed in this work provides an opportunity to predict a shape and values of the production deformation of the reflector prior to its manufacture, and, if necessary, to introduce design and technological modifications. Successful verification of the finite-element modeling results of the reflector polymerization was performed using a full-scale experiment. Tool from CFRP has been created to forming the composite antenna reflector. This tool is cheaper than the Invar tool currently used. Also, the CFRP tool requires less time to manufacture. Recommendations for improving the technological process of composite contour antenna reflectors production manufactured on CFRP-tool are developed in the paper. The optimum curing mode of the composite reflector is determined. The research results were used in the performance of experimental design work and in the manufacture of reflectors for the spacecraft.","PeriodicalId":33896,"journal":{"name":"Kosmicheskie apparaty i tekhnologii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research and optimization of production cycle of high-precision composite spacecraft antenna reflector\",\"authors\":\"N. A. Berdnikova, O. Belov, А. V. Lopatin\",\"doi\":\"10.26732/2618-7957-2019-2-59-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents a finite element model of CFRP (carbon fiber reinforcement material) reflector polymerization in autoclave for prediction of its shape after removing from the tool. The simulation was performed in the FEM software environment. The technique has developed in this work provides an opportunity to predict a shape and values of the production deformation of the reflector prior to its manufacture, and, if necessary, to introduce design and technological modifications. Successful verification of the finite-element modeling results of the reflector polymerization was performed using a full-scale experiment. Tool from CFRP has been created to forming the composite antenna reflector. This tool is cheaper than the Invar tool currently used. Also, the CFRP tool requires less time to manufacture. Recommendations for improving the technological process of composite contour antenna reflectors production manufactured on CFRP-tool are developed in the paper. The optimum curing mode of the composite reflector is determined. The research results were used in the performance of experimental design work and in the manufacture of reflectors for the spacecraft.\",\"PeriodicalId\":33896,\"journal\":{\"name\":\"Kosmicheskie apparaty i tekhnologii\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kosmicheskie apparaty i tekhnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26732/2618-7957-2019-2-59-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kosmicheskie apparaty i tekhnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26732/2618-7957-2019-2-59-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research and optimization of production cycle of high-precision composite spacecraft antenna reflector
The article presents a finite element model of CFRP (carbon fiber reinforcement material) reflector polymerization in autoclave for prediction of its shape after removing from the tool. The simulation was performed in the FEM software environment. The technique has developed in this work provides an opportunity to predict a shape and values of the production deformation of the reflector prior to its manufacture, and, if necessary, to introduce design and technological modifications. Successful verification of the finite-element modeling results of the reflector polymerization was performed using a full-scale experiment. Tool from CFRP has been created to forming the composite antenna reflector. This tool is cheaper than the Invar tool currently used. Also, the CFRP tool requires less time to manufacture. Recommendations for improving the technological process of composite contour antenna reflectors production manufactured on CFRP-tool are developed in the paper. The optimum curing mode of the composite reflector is determined. The research results were used in the performance of experimental design work and in the manufacture of reflectors for the spacecraft.