D. Hruby, L. Vacho, Ľ. Kubík, L. Tóth, Juraj Baláži, Patrik Kósa, Marián Kišev
{"title":"红外传感器与彩色表面的距离误差特征","authors":"D. Hruby, L. Vacho, Ľ. Kubík, L. Tóth, Juraj Baláži, Patrik Kósa, Marián Kišev","doi":"10.2478/ata-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the determination of the absolute errors of a small time of flight (ToF) distance sensor with respect to coloured surfaces at different illumination intensities. The aim was to determine the absolute error of the measured distance by the VL53L1X sensor when set to short-mode and long-mode at different illumination intensities: 10 lx and 350 lx depending on the coloured surface using regression analysis methods. The research was performed using 7 colour samples with different spectral colours determined according to the CIE Lab colour model. Based on the performed experiments, it was found that the error at different sensor settings, change of colour surface and different illumination intensity is approximated by a linear function only up to a certain measured distance. The process is influenced by proposed factors such as: illumination intensity, coloured surface with different illumination reflectance and signal-noise parameters of the tested sensor during the experiment.","PeriodicalId":43089,"journal":{"name":"Acta Technologica Agriculturae","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristics of Distance Errors of Infrared Sensor Relation to Colour Surfaces\",\"authors\":\"D. Hruby, L. Vacho, Ľ. Kubík, L. Tóth, Juraj Baláži, Patrik Kósa, Marián Kišev\",\"doi\":\"10.2478/ata-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the determination of the absolute errors of a small time of flight (ToF) distance sensor with respect to coloured surfaces at different illumination intensities. The aim was to determine the absolute error of the measured distance by the VL53L1X sensor when set to short-mode and long-mode at different illumination intensities: 10 lx and 350 lx depending on the coloured surface using regression analysis methods. The research was performed using 7 colour samples with different spectral colours determined according to the CIE Lab colour model. Based on the performed experiments, it was found that the error at different sensor settings, change of colour surface and different illumination intensity is approximated by a linear function only up to a certain measured distance. The process is influenced by proposed factors such as: illumination intensity, coloured surface with different illumination reflectance and signal-noise parameters of the tested sensor during the experiment.\",\"PeriodicalId\":43089,\"journal\":{\"name\":\"Acta Technologica Agriculturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Technologica Agriculturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ata-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Technologica Agriculturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characteristics of Distance Errors of Infrared Sensor Relation to Colour Surfaces
Abstract This paper deals with the determination of the absolute errors of a small time of flight (ToF) distance sensor with respect to coloured surfaces at different illumination intensities. The aim was to determine the absolute error of the measured distance by the VL53L1X sensor when set to short-mode and long-mode at different illumination intensities: 10 lx and 350 lx depending on the coloured surface using regression analysis methods. The research was performed using 7 colour samples with different spectral colours determined according to the CIE Lab colour model. Based on the performed experiments, it was found that the error at different sensor settings, change of colour surface and different illumination intensity is approximated by a linear function only up to a certain measured distance. The process is influenced by proposed factors such as: illumination intensity, coloured surface with different illumination reflectance and signal-noise parameters of the tested sensor during the experiment.
期刊介绍:
Acta Technologica Agriculturae is an international scientific double-blind peer reviewed journal focused on agricultural engineering. The journal is multidisciplinary and publishes original research and review papers in engineering, agricultural and biological sciences, and materials science. Aims and Scope Areas of interest include but are not limited to: agricultural and biosystems engineering; machines and mechanization of agricultural production; information and electrical technologies; agro-product and food processing engineering; physical, chemical and biological changes in the soil caused by tillage and field traffic, soil working machinery and terramechanics; renewable energy sources and bioenergy; rural buildings; related issues from applied physics and chemistry, ecology, economy and energy.