极端天气条件下基于软开点的城市综合能源系统负荷恢复

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2022-03-10 DOI:10.1049/esi2.12064
Xinyue Wang, Xue Li, Xiaojing Li, Alessandra Parisio, Changrong Wang, Tao Jiang
{"title":"极端天气条件下基于软开点的城市综合能源系统负荷恢复","authors":"Xinyue Wang,&nbsp;Xue Li,&nbsp;Xiaojing Li,&nbsp;Alessandra Parisio,&nbsp;Changrong Wang,&nbsp;Tao Jiang","doi":"10.1049/esi2.12064","DOIUrl":null,"url":null,"abstract":"<p>With frequent occurrences of extreme natural disasters such as typhoons in urban integrated energy systems (UIES), it is of great significance to cope with different kinds of disturbances. This paper proposes a load restoration method under typhoon weather for urban distribution and natural gas networks based on soft open points (SOP). Firstly, the typhoon wind speed model is introduced and the line fault rates of distribution networks under typhoons are calculated. Secondly, the gas turbine and electric-driven compressor are considered as the coupling units of the integrated electric–gas energy system, and related models are constructed. The fault analysis method of the natural gas network is proposed considering the faults in the distribution network lead by typhoons. Thirdly, SOP installed in the distribution network with the <i>V/f</i> control mode is applied to restore electrical loads and provide voltage support for the loads on the fault side. After that, the loads of the gas network could also be restored because of the restoration of the coupling units. Optimal energy flow is applied to determine the output of the power and gas sources, coupling units and also the loads to be restored. Finally, the fault rate of each line under typhoon disaster is analysed and the correctness and effectiveness of the resilience improving method based on SOP are verified with test systems UIES E33-G14 and UIES E123-G48.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12064","citationCount":"0","resultStr":"{\"title\":\"Soft open points based load restoration for the urban integrated energy system under extreme weather events\",\"authors\":\"Xinyue Wang,&nbsp;Xue Li,&nbsp;Xiaojing Li,&nbsp;Alessandra Parisio,&nbsp;Changrong Wang,&nbsp;Tao Jiang\",\"doi\":\"10.1049/esi2.12064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With frequent occurrences of extreme natural disasters such as typhoons in urban integrated energy systems (UIES), it is of great significance to cope with different kinds of disturbances. This paper proposes a load restoration method under typhoon weather for urban distribution and natural gas networks based on soft open points (SOP). Firstly, the typhoon wind speed model is introduced and the line fault rates of distribution networks under typhoons are calculated. Secondly, the gas turbine and electric-driven compressor are considered as the coupling units of the integrated electric–gas energy system, and related models are constructed. The fault analysis method of the natural gas network is proposed considering the faults in the distribution network lead by typhoons. Thirdly, SOP installed in the distribution network with the <i>V/f</i> control mode is applied to restore electrical loads and provide voltage support for the loads on the fault side. After that, the loads of the gas network could also be restored because of the restoration of the coupling units. Optimal energy flow is applied to determine the output of the power and gas sources, coupling units and also the loads to be restored. Finally, the fault rate of each line under typhoon disaster is analysed and the correctness and effectiveness of the resilience improving method based on SOP are verified with test systems UIES E33-G14 and UIES E123-G48.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着台风等极端自然灾害在城市综合能源系统(UIES)中的频繁发生,应对各种干扰具有重要意义。提出了一种基于软开放点(SOP)的城市配电网和天然气管网台风天气下负荷恢复方法。首先,引入了台风风速模型,计算了台风作用下配电网的线路故障率;其次,将燃气轮机和电动压气机作为电-气一体化能源系统的耦合单元,建立了相应的模型;提出了考虑台风引起的配电网故障的天然气管网故障分析方法。第三,采用V/f控制方式安装在配电网中的SOP,恢复电力负荷,为故障侧负荷提供电压支撑。在此之后,由于耦合单元的恢复,燃气网络的负荷也可以得到恢复。利用最优能量流来确定电源和气源、耦合单元的输出以及需要恢复的负荷。最后,分析了台风灾害下各线路的故障率,并利用UIES E33-G14和UIES E123-G48测试系统验证了基于SOP的恢复力提升方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft open points based load restoration for the urban integrated energy system under extreme weather events

With frequent occurrences of extreme natural disasters such as typhoons in urban integrated energy systems (UIES), it is of great significance to cope with different kinds of disturbances. This paper proposes a load restoration method under typhoon weather for urban distribution and natural gas networks based on soft open points (SOP). Firstly, the typhoon wind speed model is introduced and the line fault rates of distribution networks under typhoons are calculated. Secondly, the gas turbine and electric-driven compressor are considered as the coupling units of the integrated electric–gas energy system, and related models are constructed. The fault analysis method of the natural gas network is proposed considering the faults in the distribution network lead by typhoons. Thirdly, SOP installed in the distribution network with the V/f control mode is applied to restore electrical loads and provide voltage support for the loads on the fault side. After that, the loads of the gas network could also be restored because of the restoration of the coupling units. Optimal energy flow is applied to determine the output of the power and gas sources, coupling units and also the loads to be restored. Finally, the fault rate of each line under typhoon disaster is analysed and the correctness and effectiveness of the resilience improving method based on SOP are verified with test systems UIES E33-G14 and UIES E123-G48.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium‐ion batteries Low‐carbon economic operation of multi‐energy microgrid based on multi‐level robust optimisation Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation Estimation and prediction method of lithium battery state of health based on ridge regression and gated recurrent unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1