基于点云和图像融合的三维语义地图构建

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS IET Cybersystems and Robotics Pub Date : 2023-02-16 DOI:10.1049/csy2.12078
Huijun Li, Hailong Zhao, Bin Ye, Yu Zhang
{"title":"基于点云和图像融合的三维语义地图构建","authors":"Huijun Li,&nbsp;Hailong Zhao,&nbsp;Bin Ye,&nbsp;Yu Zhang","doi":"10.1049/csy2.12078","DOIUrl":null,"url":null,"abstract":"<p>Accurate and robust positioning and mapping are the core functions of autonomous mobile robots, and the ability to analyse and understand scenes is also an important criterion for the intelligence of autonomous mobile robots. In the outdoor environment, most robots rely on GPS positioning. When the signal is weak, the positioning error will interfere with the mapping results, making the semantic map construction less robust. This research mainly designs a semantic map construction system that does not rely on GPS signals for large outdoor scenes. It mainly designs a feature extraction scheme based on the sampling characteristics of Livox-AVIA solid-state LiDAR. The factor graph optimisation model of frame pose and inertial measurement unit (IMU) pre-integrated pose, using a sliding window to fuse solid-state LiDAR and IMU data, fuse laser inertial odometry and camera target detection results, refer to the closest point distance and curvature for semantic information. The point cloud is used for semantic segmentation to realise the construction of a 3D semantic map in outdoor scenes. The experiment verifies that laser inertial navigation odometry based on factor map optimisation has better positioning accuracy and lower overall cumulative error at turning, and the 3D semantic map obtained on this basis performs well.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12078","citationCount":"1","resultStr":"{\"title\":\"3D semantic map construction based on point cloud and image fusion\",\"authors\":\"Huijun Li,&nbsp;Hailong Zhao,&nbsp;Bin Ye,&nbsp;Yu Zhang\",\"doi\":\"10.1049/csy2.12078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and robust positioning and mapping are the core functions of autonomous mobile robots, and the ability to analyse and understand scenes is also an important criterion for the intelligence of autonomous mobile robots. In the outdoor environment, most robots rely on GPS positioning. When the signal is weak, the positioning error will interfere with the mapping results, making the semantic map construction less robust. This research mainly designs a semantic map construction system that does not rely on GPS signals for large outdoor scenes. It mainly designs a feature extraction scheme based on the sampling characteristics of Livox-AVIA solid-state LiDAR. The factor graph optimisation model of frame pose and inertial measurement unit (IMU) pre-integrated pose, using a sliding window to fuse solid-state LiDAR and IMU data, fuse laser inertial odometry and camera target detection results, refer to the closest point distance and curvature for semantic information. The point cloud is used for semantic segmentation to realise the construction of a 3D semantic map in outdoor scenes. The experiment verifies that laser inertial navigation odometry based on factor map optimisation has better positioning accuracy and lower overall cumulative error at turning, and the 3D semantic map obtained on this basis performs well.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12078\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

准确、鲁棒的定位和绘图是自主移动机器人的核心功能,分析和理解场景的能力也是自主移动机器人智能的重要标准。在室外环境下,大多数机器人依靠GPS定位。当信号较弱时,定位误差会干扰映射结果,使语义映射构造的鲁棒性降低。本研究主要针对大型户外场景设计一种不依赖GPS信号的语义地图构建系统。主要设计了一种基于Livox-AVIA固态激光雷达采样特性的特征提取方案。帧位姿和惯性测量单元(IMU)预集成位姿的因子图优化模型,利用滑动窗口融合固态激光雷达和IMU数据,融合激光惯性里程计和相机目标检测结果,参考最近点距离和曲率获取语义信息。利用点云进行语义分割,实现室外场景三维语义地图的构建。实验验证了基于因子地图优化的激光惯性导航里程计具有更好的定位精度和更小的转弯总体累积误差,在此基础上获得的三维语义地图具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D semantic map construction based on point cloud and image fusion

Accurate and robust positioning and mapping are the core functions of autonomous mobile robots, and the ability to analyse and understand scenes is also an important criterion for the intelligence of autonomous mobile robots. In the outdoor environment, most robots rely on GPS positioning. When the signal is weak, the positioning error will interfere with the mapping results, making the semantic map construction less robust. This research mainly designs a semantic map construction system that does not rely on GPS signals for large outdoor scenes. It mainly designs a feature extraction scheme based on the sampling characteristics of Livox-AVIA solid-state LiDAR. The factor graph optimisation model of frame pose and inertial measurement unit (IMU) pre-integrated pose, using a sliding window to fuse solid-state LiDAR and IMU data, fuse laser inertial odometry and camera target detection results, refer to the closest point distance and curvature for semantic information. The point cloud is used for semantic segmentation to realise the construction of a 3D semantic map in outdoor scenes. The experiment verifies that laser inertial navigation odometry based on factor map optimisation has better positioning accuracy and lower overall cumulative error at turning, and the 3D semantic map obtained on this basis performs well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
期刊最新文献
Correction-enabled reversible data hiding with pixel repetition for high embedding rate and quality preservation Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer Internal and external disturbances aware motion planning and control for quadrotors Multi-feature fusion and memory-based mobile robot target tracking system Efficient knowledge distillation for hybrid models: A vision transformer-convolutional neural network to convolutional neural network approach for classifying remote sensing images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1