{"title":"果胶和葡萄糖对冻干重组果实质地和微观结构的影响——以果胶-葡萄糖海绵为模型","authors":"Shuhan Feng, Jinfeng Bi, Youchuan Ma, Jianyong Yi","doi":"10.1016/j.foostr.2023.100344","DOIUrl":null,"url":null,"abstract":"<div><p>This study prepared a series of freeze-dried sponges with different pectin-glucose concentrations at two shelf temperatures (−20 °C and 60 °C) to simulate the specific roles of pectin and glucose in the microstructure and textural properties of freeze-dried restructured fruit products. Pectin polysaccharide is mainly responsible for the construction of scaffolds after freeze-drying. When the content of pectin is more than 1.5% pectin, the occurrence of structural collapse could be significantly inhibited. The small molecule glucose is mainly responsible for the mechanical strength of the sponges. When the glucose increases from 4% to 12%, the mechanical strength of the sponge systems rises from 400 to 1400 g. Sponges with higher pectin content (>3.0%) could prevent the structural shrinkage of systems with greater sugar content (12%) or higher shelf temperature (60 °C), suggesting a possibility to achieve shrink-free lyophilization at high shelf temperature by adding the content of pectin.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100344"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of pectin and glucose on the texture properties and microstructures of freeze-dried restructured fruits: Pectin-glucose sponge as a model\",\"authors\":\"Shuhan Feng, Jinfeng Bi, Youchuan Ma, Jianyong Yi\",\"doi\":\"10.1016/j.foostr.2023.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study prepared a series of freeze-dried sponges with different pectin-glucose concentrations at two shelf temperatures (−20 °C and 60 °C) to simulate the specific roles of pectin and glucose in the microstructure and textural properties of freeze-dried restructured fruit products. Pectin polysaccharide is mainly responsible for the construction of scaffolds after freeze-drying. When the content of pectin is more than 1.5% pectin, the occurrence of structural collapse could be significantly inhibited. The small molecule glucose is mainly responsible for the mechanical strength of the sponges. When the glucose increases from 4% to 12%, the mechanical strength of the sponge systems rises from 400 to 1400 g. Sponges with higher pectin content (>3.0%) could prevent the structural shrinkage of systems with greater sugar content (12%) or higher shelf temperature (60 °C), suggesting a possibility to achieve shrink-free lyophilization at high shelf temperature by adding the content of pectin.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"37 \",\"pages\":\"Article 100344\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329123000370\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000370","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effects of pectin and glucose on the texture properties and microstructures of freeze-dried restructured fruits: Pectin-glucose sponge as a model
This study prepared a series of freeze-dried sponges with different pectin-glucose concentrations at two shelf temperatures (−20 °C and 60 °C) to simulate the specific roles of pectin and glucose in the microstructure and textural properties of freeze-dried restructured fruit products. Pectin polysaccharide is mainly responsible for the construction of scaffolds after freeze-drying. When the content of pectin is more than 1.5% pectin, the occurrence of structural collapse could be significantly inhibited. The small molecule glucose is mainly responsible for the mechanical strength of the sponges. When the glucose increases from 4% to 12%, the mechanical strength of the sponge systems rises from 400 to 1400 g. Sponges with higher pectin content (>3.0%) could prevent the structural shrinkage of systems with greater sugar content (12%) or higher shelf temperature (60 °C), suggesting a possibility to achieve shrink-free lyophilization at high shelf temperature by adding the content of pectin.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.