Yu-Xiang Xiao, Lan Zhou, Wei Zhong, Ming-Ming Du, Yu-Bo Sheng
{"title":"基于超凝聚的单光子测量量子安全直接通信协议","authors":"Yu-Xiang Xiao, Lan Zhou, Wei Zhong, Ming-Ming Du, Yu-Bo Sheng","doi":"10.1007/s11128-023-04097-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. The typical entanglement-based QSDC protocol encodes in one degree of freedom and requires the Bell state measurement (BSM). In the paper, we propose a hyperentanglement-based QSDC protocol with the single-photon measurement. Comparing with the BSM, the single-photon measurement is easier to implement and has higher success probability. The adoption of hyperentanglement can increase the capacity of each photon pair, and thus increase the secret message capacity. The message sender can transmit 2 bits of messages with a hyperentangled photon pair in theory. We make the numerical simulations to study the secret message capacity against the collective attack and photon number splitting attack. Our QSDC protocol has potential applications in the future quantum communication field.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"22 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement\",\"authors\":\"Yu-Xiang Xiao, Lan Zhou, Wei Zhong, Ming-Ming Du, Yu-Bo Sheng\",\"doi\":\"10.1007/s11128-023-04097-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. The typical entanglement-based QSDC protocol encodes in one degree of freedom and requires the Bell state measurement (BSM). In the paper, we propose a hyperentanglement-based QSDC protocol with the single-photon measurement. Comparing with the BSM, the single-photon measurement is easier to implement and has higher success probability. The adoption of hyperentanglement can increase the capacity of each photon pair, and thus increase the secret message capacity. The message sender can transmit 2 bits of messages with a hyperentangled photon pair in theory. We make the numerical simulations to study the secret message capacity against the collective attack and photon number splitting attack. Our QSDC protocol has potential applications in the future quantum communication field.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"22 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-023-04097-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-023-04097-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement
Quantum secure direct communication (QSDC) can directly transmit secret messages through quantum channel without keys. The typical entanglement-based QSDC protocol encodes in one degree of freedom and requires the Bell state measurement (BSM). In the paper, we propose a hyperentanglement-based QSDC protocol with the single-photon measurement. Comparing with the BSM, the single-photon measurement is easier to implement and has higher success probability. The adoption of hyperentanglement can increase the capacity of each photon pair, and thus increase the secret message capacity. The message sender can transmit 2 bits of messages with a hyperentangled photon pair in theory. We make the numerical simulations to study the secret message capacity against the collective attack and photon number splitting attack. Our QSDC protocol has potential applications in the future quantum communication field.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.