{"title":"石墨类型对还原氧化石墨烯尺寸的影响","authors":"S. Drewniak, Ł. Drewniak","doi":"10.4302/plp.v14i2.1153","DOIUrl":null,"url":null,"abstract":"Reduced graphene oxide is a very attractive material for sensor applications. It exhibits high conductivity at room temperature and high specific surface area. Since it can be produced in many ways, its properties can be influenced by the fabrication method. In this paper, we investigated the influence of graphite precursors (flake, scalar and synthetic) on the size of reduced graphene oxide. We have shown that the size of the precursor determines the size of the obtained rGO. We have noted that the larger graphite size, the larger rGO size. Full Text: PDF ReferencesR. Peng, Y. Li, T. Liu et al., \"Reduced graphene oxide/SnO2@Au heterostructure for enhanced ammonia gas sensing\", Chem. Phys. Lett., 737, 136829 (2019). CrossRef S. Pei and H. M. Cheng, \"The reduction of graphene oxide\", Carbon N. Y., 50, 9 (2012). CrossRef N. Sharma, V. Sharma, R. Vyas et al., \"A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties\", J. Sci. Adv. Mater. Devices, 4, 3 (2019) CrossRef R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, \"Reduced graphene oxide today\", J. Mater. Chem. C, 8, 4 (2020). CrossRef X. Jiao, Y. Qiu, L. Zhang, and X. Zhang, \"Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees\", RSC Adv., 7, 82 (2017). CrossRef J.A. Quezada-Renteria, C.O. Ania, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, \"Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide\", Carbon N. Y., 149 (2019). CrossRef H. Gao, Y. Ma, P. Song, J. Leng, Q. Wang, \"Characterization and cytocompatibility of 3D porous biomimetic scaffold derived from rabbit nucleus pulposus tissue in vitro\", J. Mater. Sci. Mater. Electron., 32, 8 (2021). CrossRef A.T. Lawal, \"Graphene-based nano composites and their applications. A review\", Biosens. Bioelectron., 141, 111384, (2019). CrossRef E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, \"Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris\", Nanomaterials, 9, 8 (2019). CrossRef S. Sali, H.R. Mackey, A.A. Abdala, \"Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes\", Nanomaterials, 9, 5 (2019). CrossRef G. Lu, L.E. Ocola, J. Chen, \"Reduced graphene oxide for room-temperature gas sensors\", Nanotechnology, 20, 44 (2009). CrossRef C. Botas, P. Alvarez, C. Blanco et al., \"Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide\", Carbon N. Y., 52, 2013. CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the type of graphite on the size of reduced graphene oxide\",\"authors\":\"S. Drewniak, Ł. Drewniak\",\"doi\":\"10.4302/plp.v14i2.1153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduced graphene oxide is a very attractive material for sensor applications. It exhibits high conductivity at room temperature and high specific surface area. Since it can be produced in many ways, its properties can be influenced by the fabrication method. In this paper, we investigated the influence of graphite precursors (flake, scalar and synthetic) on the size of reduced graphene oxide. We have shown that the size of the precursor determines the size of the obtained rGO. We have noted that the larger graphite size, the larger rGO size. Full Text: PDF ReferencesR. Peng, Y. Li, T. Liu et al., \\\"Reduced graphene oxide/SnO2@Au heterostructure for enhanced ammonia gas sensing\\\", Chem. Phys. Lett., 737, 136829 (2019). CrossRef S. Pei and H. M. Cheng, \\\"The reduction of graphene oxide\\\", Carbon N. Y., 50, 9 (2012). CrossRef N. Sharma, V. Sharma, R. Vyas et al., \\\"A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties\\\", J. Sci. Adv. Mater. Devices, 4, 3 (2019) CrossRef R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, \\\"Reduced graphene oxide today\\\", J. Mater. Chem. C, 8, 4 (2020). CrossRef X. Jiao, Y. Qiu, L. Zhang, and X. Zhang, \\\"Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees\\\", RSC Adv., 7, 82 (2017). CrossRef J.A. Quezada-Renteria, C.O. Ania, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, \\\"Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide\\\", Carbon N. Y., 149 (2019). CrossRef H. Gao, Y. Ma, P. Song, J. Leng, Q. Wang, \\\"Characterization and cytocompatibility of 3D porous biomimetic scaffold derived from rabbit nucleus pulposus tissue in vitro\\\", J. Mater. Sci. Mater. Electron., 32, 8 (2021). CrossRef A.T. Lawal, \\\"Graphene-based nano composites and their applications. A review\\\", Biosens. Bioelectron., 141, 111384, (2019). CrossRef E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, \\\"Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris\\\", Nanomaterials, 9, 8 (2019). CrossRef S. Sali, H.R. Mackey, A.A. Abdala, \\\"Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes\\\", Nanomaterials, 9, 5 (2019). CrossRef G. Lu, L.E. Ocola, J. Chen, \\\"Reduced graphene oxide for room-temperature gas sensors\\\", Nanotechnology, 20, 44 (2009). CrossRef C. Botas, P. Alvarez, C. Blanco et al., \\\"Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide\\\", Carbon N. Y., 52, 2013. CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/plp.v14i2.1153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i2.1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
还原氧化石墨烯是一种非常有吸引力的传感器应用材料。它在室温下具有高导电性和高比表面积。由于它可以以多种方式生产,因此其性能可能受到制造方法的影响。在本文中,我们研究了石墨前驱体(薄片、标量和合成)对还原氧化石墨烯尺寸的影响。我们已经证明前驱体的大小决定了得到的还原氧化石墨烯的大小。我们注意到石墨尺寸越大,氧化石墨烯尺寸越大。全文:PDF。彭,李旸,刘涛等,“还原氧化石墨烯/SnO2@Au异质结构用于增强氨气传感”,化学。理论物理。列托人。生物工程学报,737,136829(2019)。交叉参考裴思,程海明,“氧化石墨烯的还原”,碳学报,50,9(2012)。陈建军,陈建军,陈建军等,“氧化石墨烯的制备及其气敏性能研究”,材料科学与工程学报。放置板牙。李建军,李建军,李建军,“氧化石墨烯的制备与表征”,化学工程学报,2019,31(6)。化学。[j] .农业工程学报,2016,34(2020)。引用本文:焦晓霞,邱勇,张磊,“不同石墨化度天然石墨合成的还原性氧化石墨烯的特性比较”,无机材料学报,7,82(2017)。郭志强,郭志强,郭志强,“电化学还原氧化石墨烯中质子还原度和缺陷形成的影响”,化学工程学报,39(2019)。引用本文:高辉,马勇,宋平,冷军,王琪,“兔髓核组织三维多孔仿生支架的制备及细胞相容性研究”,中华医学杂志。科学。板牙。电子。, 32, 8(2021)。CrossRef A.T. Lawal,“石墨烯基纳米复合材料及其应用”。一篇评论”,毕生森。Bioelectron。[j] .浙江农业学报,2018,31(1):481 - 481。CrossRef E. Aliyev, V. Filiz, M.M. Khan,李永杰,C. Abetz, V. Abetz,“氧化石墨烯表面官能团的结构表征”,纳米材料,9,8(2019)。[CrossRef] S. Sali, H.R. Mackey, A.A. Abdala,“氧化石墨烯合成方法对聚砜-氧化石墨烯混合基膜性能的影响”,纳米材料,9,5(2019)。吕国强,陈建军,“氧化石墨烯在室温气体传感器中的应用”,纳米材料,2004,24(2009)。[CrossRef] C. Botas, P. Alvarez, C. Blanco等,“氧化石墨热剥落还原合成类石墨烯材料的临界温度”,材料学报,2013,52。CrossRef
The influence of the type of graphite on the size of reduced graphene oxide
Reduced graphene oxide is a very attractive material for sensor applications. It exhibits high conductivity at room temperature and high specific surface area. Since it can be produced in many ways, its properties can be influenced by the fabrication method. In this paper, we investigated the influence of graphite precursors (flake, scalar and synthetic) on the size of reduced graphene oxide. We have shown that the size of the precursor determines the size of the obtained rGO. We have noted that the larger graphite size, the larger rGO size. Full Text: PDF ReferencesR. Peng, Y. Li, T. Liu et al., "Reduced graphene oxide/SnO2@Au heterostructure for enhanced ammonia gas sensing", Chem. Phys. Lett., 737, 136829 (2019). CrossRef S. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon N. Y., 50, 9 (2012). CrossRef N. Sharma, V. Sharma, R. Vyas et al., "A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties", J. Sci. Adv. Mater. Devices, 4, 3 (2019) CrossRef R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, "Reduced graphene oxide today", J. Mater. Chem. C, 8, 4 (2020). CrossRef X. Jiao, Y. Qiu, L. Zhang, and X. Zhang, "Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees", RSC Adv., 7, 82 (2017). CrossRef J.A. Quezada-Renteria, C.O. Ania, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, "Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide", Carbon N. Y., 149 (2019). CrossRef H. Gao, Y. Ma, P. Song, J. Leng, Q. Wang, "Characterization and cytocompatibility of 3D porous biomimetic scaffold derived from rabbit nucleus pulposus tissue in vitro", J. Mater. Sci. Mater. Electron., 32, 8 (2021). CrossRef A.T. Lawal, "Graphene-based nano composites and their applications. A review", Biosens. Bioelectron., 141, 111384, (2019). CrossRef E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, "Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris", Nanomaterials, 9, 8 (2019). CrossRef S. Sali, H.R. Mackey, A.A. Abdala, "Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes", Nanomaterials, 9, 5 (2019). CrossRef G. Lu, L.E. Ocola, J. Chen, "Reduced graphene oxide for room-temperature gas sensors", Nanotechnology, 20, 44 (2009). CrossRef C. Botas, P. Alvarez, C. Blanco et al., "Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide", Carbon N. Y., 52, 2013. CrossRef