石油烃污染环境中铜绿假单胞菌HB6(39)生产鼠李糖脂的研究

F. C. Samuel-Osamoka, D. Arotupin, O. Olaniyi, I. Banat
{"title":"石油烃污染环境中铜绿假单胞菌HB6(39)生产鼠李糖脂的研究","authors":"F. C. Samuel-Osamoka, D. Arotupin, O. Olaniyi, I. Banat","doi":"10.24018/ejbio.2023.4.3.439","DOIUrl":null,"url":null,"abstract":"\nThe current study evaluated hydrocarbon-degrading and biosurfactant-producing potentials of bacteria isolated from hydrocarbon contaminated soil in Nigeria, the largest crude oil reservoir in Africa. Pure bacterial isolates were grown on nutrient and Bushnell Haas agar. Bacterial isolates that grew on both media were molecularly identified via 16S rDNA sequence. Biosurfactant production detection was carried out via oil spread test, drop collapse test and surface tension measurement. The bacterial isolate with the lowest surface tension value was used for further studies. The growth of the selected isolate was measured using Spectroscopic technique, while the production of biosurfactants in the culture supernatant were determined by the measurement of surface tension, and the extracted surfactants were characterized by High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The colony forming unit on nutrient agar ranged from 1.35 x 108 to 1.93 x 108 cfu/g while the colony forming unit on Bushnell Haas agar ranged from 9.33 x 105 to 1.84 x 106 cfu/g. The bacterial species belonged to three genera including Bacillus, Cellulosimicrobium and Pseudomonas. P. aeruginosa HB6 (39) with accession number MW367569.1 had the lowest surface tension value (33.77±0.12a) indicating that it was the best biosurfactant producer. The test isolate attained early stationary phase at 10h and the cell-free supernatant showed excellent surface tension reduction potential. The extracted biosurfactant contained ample mono and di-rhamnolipid congeners. P. aeruginosa HB6 (39) is a potential bioremediation agent and can also be used for large scale production of rhamnolipids for other industrial applications. \n","PeriodicalId":72969,"journal":{"name":"European journal of biology and biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Rhamnolipids by Pseudomonas aeruginosa HB6 (39) Isolated from Petroleum-Hydrocarbon Contaminated Environment\",\"authors\":\"F. C. Samuel-Osamoka, D. Arotupin, O. Olaniyi, I. Banat\",\"doi\":\"10.24018/ejbio.2023.4.3.439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe current study evaluated hydrocarbon-degrading and biosurfactant-producing potentials of bacteria isolated from hydrocarbon contaminated soil in Nigeria, the largest crude oil reservoir in Africa. Pure bacterial isolates were grown on nutrient and Bushnell Haas agar. Bacterial isolates that grew on both media were molecularly identified via 16S rDNA sequence. Biosurfactant production detection was carried out via oil spread test, drop collapse test and surface tension measurement. The bacterial isolate with the lowest surface tension value was used for further studies. The growth of the selected isolate was measured using Spectroscopic technique, while the production of biosurfactants in the culture supernatant were determined by the measurement of surface tension, and the extracted surfactants were characterized by High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The colony forming unit on nutrient agar ranged from 1.35 x 108 to 1.93 x 108 cfu/g while the colony forming unit on Bushnell Haas agar ranged from 9.33 x 105 to 1.84 x 106 cfu/g. The bacterial species belonged to three genera including Bacillus, Cellulosimicrobium and Pseudomonas. P. aeruginosa HB6 (39) with accession number MW367569.1 had the lowest surface tension value (33.77±0.12a) indicating that it was the best biosurfactant producer. The test isolate attained early stationary phase at 10h and the cell-free supernatant showed excellent surface tension reduction potential. The extracted biosurfactant contained ample mono and di-rhamnolipid congeners. P. aeruginosa HB6 (39) is a potential bioremediation agent and can also be used for large scale production of rhamnolipids for other industrial applications. \\n\",\"PeriodicalId\":72969,\"journal\":{\"name\":\"European journal of biology and biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of biology and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejbio.2023.4.3.439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of biology and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejbio.2023.4.3.439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究评估了从非洲最大的原油油藏尼日利亚碳氢化合物污染土壤中分离的细菌的碳氢化合物降解和生物表面活性剂生产潜力。纯细菌分离株在营养琼脂和Bushnell Haas琼脂上生长。通过16S rDNA序列对生长在两种培养基上的细菌分离株进行分子鉴定。通过油扩散试验、液滴坍塌试验和表面张力测定对生物表面活性剂的产生进行了检测。使用表面张力值最低的细菌分离物进行进一步研究。使用光谱技术测量所选分离物的生长,同时通过测量表面张力来确定培养上清液中生物表面活性剂的产生,并通过高效液相色谱-质谱法(HPLC-MS)对提取的表面活性剂进行表征。营养琼脂上的菌落形成单位为1.35 x 108至1.93 x 108 cfu/g,而Bushnell Haas琼脂上的集落形成单位为9.33 x 105至1.84 x 106 cfu/g。细菌分为芽孢杆菌属、纤维素酰亚胺菌属和假单胞菌属三个属。铜绿假单胞菌HB6(39)(登录号MW367569.1)的表面张力值最低(33.77±0.12a),表明它是最好的生物表面活性剂生产商。试验分离物在10h达到早期固定期,无细胞上清液显示出优异的表面张力降低潜力。提取的生物表面活性剂含有大量的单一和二鼠李糖脂同源物。铜绿假单胞菌HB6(39)是一种潜在的生物修复剂,也可用于大规模生产用于其他工业应用的鼠李糖脂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of Rhamnolipids by Pseudomonas aeruginosa HB6 (39) Isolated from Petroleum-Hydrocarbon Contaminated Environment
The current study evaluated hydrocarbon-degrading and biosurfactant-producing potentials of bacteria isolated from hydrocarbon contaminated soil in Nigeria, the largest crude oil reservoir in Africa. Pure bacterial isolates were grown on nutrient and Bushnell Haas agar. Bacterial isolates that grew on both media were molecularly identified via 16S rDNA sequence. Biosurfactant production detection was carried out via oil spread test, drop collapse test and surface tension measurement. The bacterial isolate with the lowest surface tension value was used for further studies. The growth of the selected isolate was measured using Spectroscopic technique, while the production of biosurfactants in the culture supernatant were determined by the measurement of surface tension, and the extracted surfactants were characterized by High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The colony forming unit on nutrient agar ranged from 1.35 x 108 to 1.93 x 108 cfu/g while the colony forming unit on Bushnell Haas agar ranged from 9.33 x 105 to 1.84 x 106 cfu/g. The bacterial species belonged to three genera including Bacillus, Cellulosimicrobium and Pseudomonas. P. aeruginosa HB6 (39) with accession number MW367569.1 had the lowest surface tension value (33.77±0.12a) indicating that it was the best biosurfactant producer. The test isolate attained early stationary phase at 10h and the cell-free supernatant showed excellent surface tension reduction potential. The extracted biosurfactant contained ample mono and di-rhamnolipid congeners. P. aeruginosa HB6 (39) is a potential bioremediation agent and can also be used for large scale production of rhamnolipids for other industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Study of Jatropha curcas Accessions Control of Photoinhibition and Photoprotective Mechanisms in Senescing Leaves in a Semi-Arid Region Botswana Point-of-Care Molecular Testing with tinto rangTM: A Food Grade Safe Fluorophore for Colorimetric LAMP Assays at Low Resource Settings New Species of Preussia from Sedimentary Cost in Basrah Province, Iraq Sexual Dimorphism of Elastic Fibers in Prenatal Lung Mice Microbial Biotechnology: A Key Tool for Addressing Climate Change and Food Insecurity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1