不同生境无尾动物脑室组织学和硬度的比较

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2021-09-13 DOI:10.1007/s10867-021-09579-4
Megumi Ito, Yoshihiro Ujihara, Shukei Sugita, Masanori Nakamura
{"title":"不同生境无尾动物脑室组织学和硬度的比较","authors":"Megumi Ito,&nbsp;Yoshihiro Ujihara,&nbsp;Shukei Sugita,&nbsp;Masanori Nakamura","doi":"10.1007/s10867-021-09579-4","DOIUrl":null,"url":null,"abstract":"<div><p>Vertebrate hearts have undergone marked morphological and structural changes to adapt to different environments and lifestyles as part of the evolutionary process. Amphibians were the first vertebrates to migrate to land. Transition from aquatic to terrestrial environments required the ability to circulate blood against the force of gravity. In this study, we investigated the passive mechanical properties and histology of the ventricles of three species of Anura (frogs and toads) from different habitats, <i>Xenopus laevis</i> (aquatic), <i>Pelophylax nigromaculatus</i> (semiaquatic), and <i>Bufo japonicus formosus</i> (terrestrial). Pressure-loading tests demonstrated stiffer ventricles of <i>P. nigromaculatus</i> and <i>B. j. formosus</i> compared <i>X. laevis</i> ventricles. Histological analysis revealed a remarkable difference in the structure of cardiac tissue: thickening of the compact myocardium layer of <i>P. nigromaculatus</i> and <i>B. j. formosus</i> and enrichment of the collagen fibers of <i>B. j. formosus.</i> The amount of collagen fibers differed among the species, as quantitatively confirmed by second-harmonic generation light microscopy. No significant difference was observed in cardiomyocytes isolated from each animal, and the sarcomere length was almost the same. The results indicate that the ventricles of Anura stiffen during adaptation to life on land.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09579-4.pdf","citationCount":"2","resultStr":"{\"title\":\"Comparison of the histology and stiffness of ventricles in Anura of different habitats\",\"authors\":\"Megumi Ito,&nbsp;Yoshihiro Ujihara,&nbsp;Shukei Sugita,&nbsp;Masanori Nakamura\",\"doi\":\"10.1007/s10867-021-09579-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vertebrate hearts have undergone marked morphological and structural changes to adapt to different environments and lifestyles as part of the evolutionary process. Amphibians were the first vertebrates to migrate to land. Transition from aquatic to terrestrial environments required the ability to circulate blood against the force of gravity. In this study, we investigated the passive mechanical properties and histology of the ventricles of three species of Anura (frogs and toads) from different habitats, <i>Xenopus laevis</i> (aquatic), <i>Pelophylax nigromaculatus</i> (semiaquatic), and <i>Bufo japonicus formosus</i> (terrestrial). Pressure-loading tests demonstrated stiffer ventricles of <i>P. nigromaculatus</i> and <i>B. j. formosus</i> compared <i>X. laevis</i> ventricles. Histological analysis revealed a remarkable difference in the structure of cardiac tissue: thickening of the compact myocardium layer of <i>P. nigromaculatus</i> and <i>B. j. formosus</i> and enrichment of the collagen fibers of <i>B. j. formosus.</i> The amount of collagen fibers differed among the species, as quantitatively confirmed by second-harmonic generation light microscopy. No significant difference was observed in cardiomyocytes isolated from each animal, and the sarcomere length was almost the same. The results indicate that the ventricles of Anura stiffen during adaptation to life on land.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10867-021-09579-4.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-021-09579-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09579-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

作为进化过程的一部分,脊椎动物的心脏经历了显著的形态和结构变化,以适应不同的环境和生活方式。两栖动物是最早迁移到陆地上的脊椎动物。从水生环境过渡到陆地环境需要血液循环能力来对抗重力。本研究研究了三种不同生境的无尾动物(青蛙和蟾蜍)的脑室的被动力学特性和组织学,分别是水生爪蟾(Xenopus laevis)、半水生佩狐(Pelophylax nigromaculatus)和陆生蟾(Bufo japonicus formosus)。压力负荷试验表明,黑斑马鱼的心室较黑斑马鱼的心室更硬。组织学分析显示心肌组织结构有显著差异:黑斑鱼和台湾黑斑鱼致密心肌层增厚,台湾黑斑鱼胶原纤维丰富。胶原纤维的数量不同的物种,定量证实了二次谐波一代光学显微镜。各组分离的心肌细胞无明显差异,肌节长度几乎相同。结果表明,在适应陆地生活的过程中,无尾动物的脑室变硬。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the histology and stiffness of ventricles in Anura of different habitats

Vertebrate hearts have undergone marked morphological and structural changes to adapt to different environments and lifestyles as part of the evolutionary process. Amphibians were the first vertebrates to migrate to land. Transition from aquatic to terrestrial environments required the ability to circulate blood against the force of gravity. In this study, we investigated the passive mechanical properties and histology of the ventricles of three species of Anura (frogs and toads) from different habitats, Xenopus laevis (aquatic), Pelophylax nigromaculatus (semiaquatic), and Bufo japonicus formosus (terrestrial). Pressure-loading tests demonstrated stiffer ventricles of P. nigromaculatus and B. j. formosus compared X. laevis ventricles. Histological analysis revealed a remarkable difference in the structure of cardiac tissue: thickening of the compact myocardium layer of P. nigromaculatus and B. j. formosus and enrichment of the collagen fibers of B. j. formosus. The amount of collagen fibers differed among the species, as quantitatively confirmed by second-harmonic generation light microscopy. No significant difference was observed in cardiomyocytes isolated from each animal, and the sarcomere length was almost the same. The results indicate that the ventricles of Anura stiffen during adaptation to life on land.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1