{"title":"聚甲基丙烯酸甲酯纳米颗粒包被姜黄素对肺癌细胞的影响","authors":"Ximiao Ma, F. Fu","doi":"10.1166/NNL.2020.3205","DOIUrl":null,"url":null,"abstract":"Lung cancer is a malignant tumor with an extremely high incidence and mortality rate in clinical practice and its pathogenesis remains unclear at present. Currently, the methods for treating this disease have relatively high limitations. However, with the gradual maturity and application\n of nanotechnology, a number of studies have pointed out that polymethyl methacrylate nanoparticles (PMMA-NPs) encapsulated with curcumin (Cur) possibly becomes a new and effective scheme for treating lung cancer. First of all, Cur-PMMA-NPs were prepared. Their sizes were determined by characterization\n techniques, and their effects on lung cancer cells A549 were detected by Cell proliferation experiment and flow cytometry. The expression of apoptosis-related proteins in the cells was detected by Western blotting. The results showed that polyacrylic acid (PAA)-Cur-PMMA-NPs had a particle\n size of (215.00±6.00) nm. The drug loading rate and the encapsulation rate of nanospheres were remarkably higher than those of free Cur (P < 0.05). After the intervention of PAA-Cur-PMMA-NPs in the cells, the cell proliferation and the Bcl-2 expression reduced, while the apoptotic\n rate and the expression of Bax, Caspase-3, and Caspase-9 increased (P < 0.05). Accordingly, Cur-PMMA-NPs can inhibit lung cancer cells from growth and induce their apoptosis, so they are expected to become an effective intervention measure to improve the therapeutic effect on lung\n cancer in the future.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1015-1021"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Curcumin Coated with Polymethyl Methacrylate Nanoparticles on Lung Cancer Cells\",\"authors\":\"Ximiao Ma, F. Fu\",\"doi\":\"10.1166/NNL.2020.3205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is a malignant tumor with an extremely high incidence and mortality rate in clinical practice and its pathogenesis remains unclear at present. Currently, the methods for treating this disease have relatively high limitations. However, with the gradual maturity and application\\n of nanotechnology, a number of studies have pointed out that polymethyl methacrylate nanoparticles (PMMA-NPs) encapsulated with curcumin (Cur) possibly becomes a new and effective scheme for treating lung cancer. First of all, Cur-PMMA-NPs were prepared. Their sizes were determined by characterization\\n techniques, and their effects on lung cancer cells A549 were detected by Cell proliferation experiment and flow cytometry. The expression of apoptosis-related proteins in the cells was detected by Western blotting. The results showed that polyacrylic acid (PAA)-Cur-PMMA-NPs had a particle\\n size of (215.00±6.00) nm. The drug loading rate and the encapsulation rate of nanospheres were remarkably higher than those of free Cur (P < 0.05). After the intervention of PAA-Cur-PMMA-NPs in the cells, the cell proliferation and the Bcl-2 expression reduced, while the apoptotic\\n rate and the expression of Bax, Caspase-3, and Caspase-9 increased (P < 0.05). Accordingly, Cur-PMMA-NPs can inhibit lung cancer cells from growth and induce their apoptosis, so they are expected to become an effective intervention measure to improve the therapeutic effect on lung\\n cancer in the future.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"1015-1021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Curcumin Coated with Polymethyl Methacrylate Nanoparticles on Lung Cancer Cells
Lung cancer is a malignant tumor with an extremely high incidence and mortality rate in clinical practice and its pathogenesis remains unclear at present. Currently, the methods for treating this disease have relatively high limitations. However, with the gradual maturity and application
of nanotechnology, a number of studies have pointed out that polymethyl methacrylate nanoparticles (PMMA-NPs) encapsulated with curcumin (Cur) possibly becomes a new and effective scheme for treating lung cancer. First of all, Cur-PMMA-NPs were prepared. Their sizes were determined by characterization
techniques, and their effects on lung cancer cells A549 were detected by Cell proliferation experiment and flow cytometry. The expression of apoptosis-related proteins in the cells was detected by Western blotting. The results showed that polyacrylic acid (PAA)-Cur-PMMA-NPs had a particle
size of (215.00±6.00) nm. The drug loading rate and the encapsulation rate of nanospheres were remarkably higher than those of free Cur (P < 0.05). After the intervention of PAA-Cur-PMMA-NPs in the cells, the cell proliferation and the Bcl-2 expression reduced, while the apoptotic
rate and the expression of Bax, Caspase-3, and Caspase-9 increased (P < 0.05). Accordingly, Cur-PMMA-NPs can inhibit lung cancer cells from growth and induce their apoptosis, so they are expected to become an effective intervention measure to improve the therapeutic effect on lung
cancer in the future.