{"title":"匹配滤波器的实现,复杂性和增益在分数傅里叶域","authors":"S. Elgamel","doi":"10.3849/aimt.01513","DOIUrl":null,"url":null,"abstract":"The radar matched filter is implemented in fractional Fourier domain (FrFD) and the required processing steps to perform the radar matched filter in FrFD are demonstrated. The complexity of the FrFD matched filter over the normal frequency transform matched filter is also investigated. The performance enhancements for using the matched filter in the FrFD are presented and the enhancement in the signal to noise ratio (SNR) output at different target SNRs are also described.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matched Filter Implementation, Complexity, and Gain in Fractional Fourier Domain\",\"authors\":\"S. Elgamel\",\"doi\":\"10.3849/aimt.01513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radar matched filter is implemented in fractional Fourier domain (FrFD) and the required processing steps to perform the radar matched filter in FrFD are demonstrated. The complexity of the FrFD matched filter over the normal frequency transform matched filter is also investigated. The performance enhancements for using the matched filter in the FrFD are presented and the enhancement in the signal to noise ratio (SNR) output at different target SNRs are also described.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/aimt.01513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.01513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Matched Filter Implementation, Complexity, and Gain in Fractional Fourier Domain
The radar matched filter is implemented in fractional Fourier domain (FrFD) and the required processing steps to perform the radar matched filter in FrFD are demonstrated. The complexity of the FrFD matched filter over the normal frequency transform matched filter is also investigated. The performance enhancements for using the matched filter in the FrFD are presented and the enhancement in the signal to noise ratio (SNR) output at different target SNRs are also described.