使用机器学习预测处理过的饮用水中细菌的存在

IF 2.6 Q2 WATER RESOURCES Frontiers in Water Pub Date : 2023-06-30 DOI:10.3389/frwa.2023.1199632
Grigorios Kyritsakas, J. Boxall, V. Speight
{"title":"使用机器学习预测处理过的饮用水中细菌的存在","authors":"Grigorios Kyritsakas, J. Boxall, V. Speight","doi":"10.3389/frwa.2023.1199632","DOIUrl":null,"url":null,"abstract":"A novel data-driven model for the prediction of bacteriological presence, in the form of total cell counts, in treated water exiting drinking water treatment plants is presented. The model was developed and validated using a year of hourly online flow cytometer data from an operational drinking water treatment plant. Various machine learning methods are compared (random forest, support vector machines, k-Nearest Neighbors, Feed-forward Artificial Neural Network, Long Short Term Memory and RusBoost) and different variables selection approaches are used to improve the model's accuracy. Results indicate that the model could accurately predict total cell counts 12 h ahead for both regression and classification-based forecasts—NSE = 0.96 for the best regression model, using the K-Nearest Neighbors algorithm, and Accuracy = 89.33% for the best classification model, using the combined random forest, K-neighbors and RusBoost algorithms. This forecasting horizon is sufficient to enable proactive operational interventions to improve the treatment processes, thereby helping to ensure safe drinking water.","PeriodicalId":33801,"journal":{"name":"Frontiers in Water","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting bacteriological presence in treated drinking water using machine learning\",\"authors\":\"Grigorios Kyritsakas, J. Boxall, V. Speight\",\"doi\":\"10.3389/frwa.2023.1199632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel data-driven model for the prediction of bacteriological presence, in the form of total cell counts, in treated water exiting drinking water treatment plants is presented. The model was developed and validated using a year of hourly online flow cytometer data from an operational drinking water treatment plant. Various machine learning methods are compared (random forest, support vector machines, k-Nearest Neighbors, Feed-forward Artificial Neural Network, Long Short Term Memory and RusBoost) and different variables selection approaches are used to improve the model's accuracy. Results indicate that the model could accurately predict total cell counts 12 h ahead for both regression and classification-based forecasts—NSE = 0.96 for the best regression model, using the K-Nearest Neighbors algorithm, and Accuracy = 89.33% for the best classification model, using the combined random forest, K-neighbors and RusBoost algorithms. This forecasting horizon is sufficient to enable proactive operational interventions to improve the treatment processes, thereby helping to ensure safe drinking water.\",\"PeriodicalId\":33801,\"journal\":{\"name\":\"Frontiers in Water\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frwa.2023.1199632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frwa.2023.1199632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的数据驱动模型,用于预测细菌的存在,以总细胞计数的形式,在饮用水处理厂流出的处理过的水中。该模型的开发和验证使用了一年中每小时在线流式细胞仪数据从一个运行的饮用水处理厂。比较了各种机器学习方法(随机森林、支持向量机、k近邻、前馈人工神经网络、长短期记忆和RusBoost),并使用不同的变量选择方法来提高模型的准确性。结果表明,该模型对于回归和基于分类的预测均能准确预测12 h前的细胞总数,使用k近邻算法的最佳回归模型的nse = 0.96,使用随机森林、k近邻和RusBoost算法的最佳分类模型的准确率= 89.33%。这一预测范围足以使我们能够采取主动的业务干预措施,改进处理过程,从而有助于确保安全的饮用水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting bacteriological presence in treated drinking water using machine learning
A novel data-driven model for the prediction of bacteriological presence, in the form of total cell counts, in treated water exiting drinking water treatment plants is presented. The model was developed and validated using a year of hourly online flow cytometer data from an operational drinking water treatment plant. Various machine learning methods are compared (random forest, support vector machines, k-Nearest Neighbors, Feed-forward Artificial Neural Network, Long Short Term Memory and RusBoost) and different variables selection approaches are used to improve the model's accuracy. Results indicate that the model could accurately predict total cell counts 12 h ahead for both regression and classification-based forecasts—NSE = 0.96 for the best regression model, using the K-Nearest Neighbors algorithm, and Accuracy = 89.33% for the best classification model, using the combined random forest, K-neighbors and RusBoost algorithms. This forecasting horizon is sufficient to enable proactive operational interventions to improve the treatment processes, thereby helping to ensure safe drinking water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Water
Frontiers in Water WATER RESOURCES-
CiteScore
4.00
自引率
6.90%
发文量
224
审稿时长
13 weeks
期刊最新文献
River-floodplain connectivity and residence times controlled by topographic bluffs along a backwater transition Rating curve development and uncertainty analysis in mountainous watersheds for informed hydrology and resource management Characterization of sewage quality and its spatiotemporal variations in a small town in Eastern Guangdong, China Model and remote-sensing-guided experimental design and hypothesis generation for monitoring snow-soil–plant interactions Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1