{"title":"309L不锈钢包层在钢丝喂料定向能沉积碳钢上的耐腐蚀性能","authors":"Scott C. Bozeman, J. Tucker, B. Isgor","doi":"10.5006/4268","DOIUrl":null,"url":null,"abstract":"Additive manufacturing tools are capable of applying overlay austenitic stainless steel (SS) claddings to carbon steel components. The benefits of this approach over arc welding include a smaller heat-affected zone, residual stress reduction, and material savings. In particular, wire-directed energy deposition (DED) is a suitable technique because of its low material cost and high rate of production compared to other additive manufacturing methods. However, metallurgical variations in composition, phase fraction, and microsegregation can potentially influence the corrosion behavior of such claddings. In this work, 309L SS is clad on carbon steel substrates and electrochemical methods are used to measure their general and pitting corrosion resistance in simulated marine environments (3.5 wt.% NaCl solutions). Two-layer claddings are fabricated with four laser powers to understand the effects of bulk chemical composition, austenite / δ-ferrite phase fractions, and individual phase compositions on corrosion behavior. The two-layer claddings are compared to a single layer cladding, wrought 304 SS, and the carbon steel substrate for a comprehensive assessment of corrosion performance. The two-layer claddings are remarkably resistant to general corrosion in the 3.5 wt.% NaCl environment because of their high Cr content (21.6 – 23.3 wt.% Cr). The single layer cladding exhibits localized corrosion at unmixed Fe-rich peninsulas that originate at the dissimilar metal boundary and protrude into the first cladding layer. All two-layer claddings possess higher pitting corrosion resistance than wrought 304 SS, demonstrating their effectiveness as a corrosion-resistant barrier. The pitting corrosion resistance is superior for claddings made with lower laser powers, due to low dilution and greater δ-ferrite contents.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance of 309L stainless steel claddings on carbon steel produced with wire-fed directed energy deposition\",\"authors\":\"Scott C. Bozeman, J. Tucker, B. Isgor\",\"doi\":\"10.5006/4268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing tools are capable of applying overlay austenitic stainless steel (SS) claddings to carbon steel components. The benefits of this approach over arc welding include a smaller heat-affected zone, residual stress reduction, and material savings. In particular, wire-directed energy deposition (DED) is a suitable technique because of its low material cost and high rate of production compared to other additive manufacturing methods. However, metallurgical variations in composition, phase fraction, and microsegregation can potentially influence the corrosion behavior of such claddings. In this work, 309L SS is clad on carbon steel substrates and electrochemical methods are used to measure their general and pitting corrosion resistance in simulated marine environments (3.5 wt.% NaCl solutions). Two-layer claddings are fabricated with four laser powers to understand the effects of bulk chemical composition, austenite / δ-ferrite phase fractions, and individual phase compositions on corrosion behavior. The two-layer claddings are compared to a single layer cladding, wrought 304 SS, and the carbon steel substrate for a comprehensive assessment of corrosion performance. The two-layer claddings are remarkably resistant to general corrosion in the 3.5 wt.% NaCl environment because of their high Cr content (21.6 – 23.3 wt.% Cr). The single layer cladding exhibits localized corrosion at unmixed Fe-rich peninsulas that originate at the dissimilar metal boundary and protrude into the first cladding layer. All two-layer claddings possess higher pitting corrosion resistance than wrought 304 SS, demonstrating their effectiveness as a corrosion-resistant barrier. The pitting corrosion resistance is superior for claddings made with lower laser powers, due to low dilution and greater δ-ferrite contents.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4268\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4268","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion resistance of 309L stainless steel claddings on carbon steel produced with wire-fed directed energy deposition
Additive manufacturing tools are capable of applying overlay austenitic stainless steel (SS) claddings to carbon steel components. The benefits of this approach over arc welding include a smaller heat-affected zone, residual stress reduction, and material savings. In particular, wire-directed energy deposition (DED) is a suitable technique because of its low material cost and high rate of production compared to other additive manufacturing methods. However, metallurgical variations in composition, phase fraction, and microsegregation can potentially influence the corrosion behavior of such claddings. In this work, 309L SS is clad on carbon steel substrates and electrochemical methods are used to measure their general and pitting corrosion resistance in simulated marine environments (3.5 wt.% NaCl solutions). Two-layer claddings are fabricated with four laser powers to understand the effects of bulk chemical composition, austenite / δ-ferrite phase fractions, and individual phase compositions on corrosion behavior. The two-layer claddings are compared to a single layer cladding, wrought 304 SS, and the carbon steel substrate for a comprehensive assessment of corrosion performance. The two-layer claddings are remarkably resistant to general corrosion in the 3.5 wt.% NaCl environment because of their high Cr content (21.6 – 23.3 wt.% Cr). The single layer cladding exhibits localized corrosion at unmixed Fe-rich peninsulas that originate at the dissimilar metal boundary and protrude into the first cladding layer. All two-layer claddings possess higher pitting corrosion resistance than wrought 304 SS, demonstrating their effectiveness as a corrosion-resistant barrier. The pitting corrosion resistance is superior for claddings made with lower laser powers, due to low dilution and greater δ-ferrite contents.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.