{"title":"反应山毛榉木材的初始解吸","authors":"J. Majka, M. Sydor, Jakub Prentki, M. Zborowska","doi":"10.5552/drvind.2022.0021","DOIUrl":null,"url":null,"abstract":"The research aimed to obtain empirical data for modeling the initial desorption in reaction wood from the cross-section of the green beech (Fagus sylvatica L.) log. Firstly, we analyzed the chemical composition, macro and microscopic structure of tension and opposite wood tissue. Then, the Equilibrium Moisture Content (EMC) was measured by the Dynamic Vapor Sorption method during the initial desorption. The used air parameters were specific for the mild drying schedule of green beech timber (t = 20, 35, and 50 °C, Relative Humidity (RH) ranging from 95 to 0 %). Relationships between the EMC of reaction wood and drying parameters were modeled using the Response Surface Method (RSM). The tests revealed: different hygroscopic properties of tension and opposite wood, the dependence of EMC value on temperature, and differences between EMC values for initial (first) and second desorption. Moreover, it was confirmed that, during initial desorption, the EMCs of reaction wood are significantly higher than reference EMC data. The differences in the EMC value are up to 0.14 kg/kg (for air with RH above 90 %). The presented polynomial model of the initial desorption of reaction beech wood can improve drying schedules for beech sawn timber with a high amount of reaction tissue.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Initial Desorption of Reaction Beech Wood\",\"authors\":\"J. Majka, M. Sydor, Jakub Prentki, M. Zborowska\",\"doi\":\"10.5552/drvind.2022.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research aimed to obtain empirical data for modeling the initial desorption in reaction wood from the cross-section of the green beech (Fagus sylvatica L.) log. Firstly, we analyzed the chemical composition, macro and microscopic structure of tension and opposite wood tissue. Then, the Equilibrium Moisture Content (EMC) was measured by the Dynamic Vapor Sorption method during the initial desorption. The used air parameters were specific for the mild drying schedule of green beech timber (t = 20, 35, and 50 °C, Relative Humidity (RH) ranging from 95 to 0 %). Relationships between the EMC of reaction wood and drying parameters were modeled using the Response Surface Method (RSM). The tests revealed: different hygroscopic properties of tension and opposite wood, the dependence of EMC value on temperature, and differences between EMC values for initial (first) and second desorption. Moreover, it was confirmed that, during initial desorption, the EMCs of reaction wood are significantly higher than reference EMC data. The differences in the EMC value are up to 0.14 kg/kg (for air with RH above 90 %). The presented polynomial model of the initial desorption of reaction beech wood can improve drying schedules for beech sawn timber with a high amount of reaction tissue.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2022.0021\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2022.0021","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
The research aimed to obtain empirical data for modeling the initial desorption in reaction wood from the cross-section of the green beech (Fagus sylvatica L.) log. Firstly, we analyzed the chemical composition, macro and microscopic structure of tension and opposite wood tissue. Then, the Equilibrium Moisture Content (EMC) was measured by the Dynamic Vapor Sorption method during the initial desorption. The used air parameters were specific for the mild drying schedule of green beech timber (t = 20, 35, and 50 °C, Relative Humidity (RH) ranging from 95 to 0 %). Relationships between the EMC of reaction wood and drying parameters were modeled using the Response Surface Method (RSM). The tests revealed: different hygroscopic properties of tension and opposite wood, the dependence of EMC value on temperature, and differences between EMC values for initial (first) and second desorption. Moreover, it was confirmed that, during initial desorption, the EMCs of reaction wood are significantly higher than reference EMC data. The differences in the EMC value are up to 0.14 kg/kg (for air with RH above 90 %). The presented polynomial model of the initial desorption of reaction beech wood can improve drying schedules for beech sawn timber with a high amount of reaction tissue.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.