{"title":"波导- qed系统中双巨原子纠缠的产生","authors":"Xiangguo Yin, Jie-Qiao Liao","doi":"10.1103/PhysRevA.108.023728","DOIUrl":null,"url":null,"abstract":"We study the generation of quantum entanglement between two giant atoms coupled to a one-dimensional waveguide. Since each giant atom interacts with the waveguide at two separate coupling points, there exist three different coupling configurations in the two-atom waveguide system: separated, braided, and nested couplings. Within the Wigner-Weisskopf framework for single coupling points, the quantum master equations governing the evolution of the two giant atoms are obtained. For each coupling configuration, the entanglement dynamics of the two giant atoms is studied, including the cases of two different atomic initial states: single- and double-excitation states. It is shown that the generated entanglement depends on the coupling configuration, phase shift, and atomic initial state. For the single-excitation initial state, there exists steady-state entanglement for these three couplings due to the appearance of the dark state. For the double-excitation initial state, an entanglement sudden birth is observed via adjusting the phase shift. In particular, the maximal entanglement for the nested coupling is about one order of magnitude larger than those of separate and braided couplings. In addition, the influence of the atomic frequency detuning on the entanglement generation is studied. This work can be utilized for the generation and control of atomic entanglement in quantum networks based on giant-atom waveguide-QED systems, which have wide potential applications in quantum information processing.","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of two-giant-atom entanglement in waveguide-QED systems\",\"authors\":\"Xiangguo Yin, Jie-Qiao Liao\",\"doi\":\"10.1103/PhysRevA.108.023728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generation of quantum entanglement between two giant atoms coupled to a one-dimensional waveguide. Since each giant atom interacts with the waveguide at two separate coupling points, there exist three different coupling configurations in the two-atom waveguide system: separated, braided, and nested couplings. Within the Wigner-Weisskopf framework for single coupling points, the quantum master equations governing the evolution of the two giant atoms are obtained. For each coupling configuration, the entanglement dynamics of the two giant atoms is studied, including the cases of two different atomic initial states: single- and double-excitation states. It is shown that the generated entanglement depends on the coupling configuration, phase shift, and atomic initial state. For the single-excitation initial state, there exists steady-state entanglement for these three couplings due to the appearance of the dark state. For the double-excitation initial state, an entanglement sudden birth is observed via adjusting the phase shift. In particular, the maximal entanglement for the nested coupling is about one order of magnitude larger than those of separate and braided couplings. In addition, the influence of the atomic frequency detuning on the entanglement generation is studied. This work can be utilized for the generation and control of atomic entanglement in quantum networks based on giant-atom waveguide-QED systems, which have wide potential applications in quantum information processing.\",\"PeriodicalId\":48702,\"journal\":{\"name\":\"Physical Review a\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevA.108.023728\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevA.108.023728","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Generation of two-giant-atom entanglement in waveguide-QED systems
We study the generation of quantum entanglement between two giant atoms coupled to a one-dimensional waveguide. Since each giant atom interacts with the waveguide at two separate coupling points, there exist three different coupling configurations in the two-atom waveguide system: separated, braided, and nested couplings. Within the Wigner-Weisskopf framework for single coupling points, the quantum master equations governing the evolution of the two giant atoms are obtained. For each coupling configuration, the entanglement dynamics of the two giant atoms is studied, including the cases of two different atomic initial states: single- and double-excitation states. It is shown that the generated entanglement depends on the coupling configuration, phase shift, and atomic initial state. For the single-excitation initial state, there exists steady-state entanglement for these three couplings due to the appearance of the dark state. For the double-excitation initial state, an entanglement sudden birth is observed via adjusting the phase shift. In particular, the maximal entanglement for the nested coupling is about one order of magnitude larger than those of separate and braided couplings. In addition, the influence of the atomic frequency detuning on the entanglement generation is studied. This work can be utilized for the generation and control of atomic entanglement in quantum networks based on giant-atom waveguide-QED systems, which have wide potential applications in quantum information processing.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics