多人群死亡原因的联合模型

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2021-11-12 DOI:10.1017/s1748499523000118
Nhan H. Huynh, M. Ludkovski
{"title":"多人群死亡原因的联合模型","authors":"Nhan H. Huynh, M. Ludkovski","doi":"10.1017/s1748499523000118","DOIUrl":null,"url":null,"abstract":"\n We investigate jointly modelling age–year-specific rates of various causes of death in a multinational setting. We apply multi-output Gaussian processes (MOGPs), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint models for cause-of-death mortality in multiple populations\",\"authors\":\"Nhan H. Huynh, M. Ludkovski\",\"doi\":\"10.1017/s1748499523000118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigate jointly modelling age–year-specific rates of various causes of death in a multinational setting. We apply multi-output Gaussian processes (MOGPs), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1748499523000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

我们在多国背景下共同研究了不同年龄、特定年份的各种死因死亡率模型。我们应用多输出高斯过程(mogp),一种空间机器学习方法,来平滑和推断多个国家和两性的多种死因死亡率。为了保持灵活性和可扩展性,我们研究了具有kronecker结构核和潜在因素的mogp。特别是,我们开发了一个定制的多层次MOGP,利用死亡率表的网格结构来有效地捕获不同因素输入之间的异质性和依赖性。结果用人类死因数据库(HCD)的数据集说明。我们讨论了一个涉及三个欧洲国家癌症变异的案例研究和一个美国的研究,该研究考虑了八个顶级原因,并包括与全因分析的比较。我们的模型提供了对特定原因死亡率趋势的共性的见解,并展示了各自数据融合的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint models for cause-of-death mortality in multiple populations
We investigate jointly modelling age–year-specific rates of various causes of death in a multinational setting. We apply multi-output Gaussian processes (MOGPs), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach AffineMortality: An R package for estimation, analysis, and projection of affine mortality models On the benefits of pension plan consolidation: Understanding the impact of full plan mergers Bonus-Malus Scale premiums for Tweedie’s compound Poisson models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1