R. Pavlov, F. Valeeva, G. Gaynanova, D. Kuznetsov, L. Zakharova
{"title":"以氨基醇为添加剂的形啉表面活性剂的聚集:近距离观察","authors":"R. Pavlov, F. Valeeva, G. Gaynanova, D. Kuznetsov, L. Zakharova","doi":"10.1680/jsuin.22.00006","DOIUrl":null,"url":null,"abstract":"Mono-, di-, triethanolamine in a combination with methylmorpholinium and hydroxyethylmorpholinium surfactants were investigated for their aggregation and solubilizing properties. A cooperative behavior of the solubilization by mixed surfactant – ethanolamine systems is described. Ethanolamines strongly affect pH and lead to Orange OT phenolic group deprotonation and subsequent increase in aqueous/micellar solubility. The morpholinium surfactant micelles reduce pKa of Orange OT phenolic group, enabling its deprotonation at the earlier stages of media alkalinization. Obtained surfactant – ethanolamine mixtures can solubilize very large amounts of hydrophobic dye, which can then be triggered to precipitate via acidification.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Aggregation of morpholinium surfactants with amino alcohols as additives: a close look\",\"authors\":\"R. Pavlov, F. Valeeva, G. Gaynanova, D. Kuznetsov, L. Zakharova\",\"doi\":\"10.1680/jsuin.22.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mono-, di-, triethanolamine in a combination with methylmorpholinium and hydroxyethylmorpholinium surfactants were investigated for their aggregation and solubilizing properties. A cooperative behavior of the solubilization by mixed surfactant – ethanolamine systems is described. Ethanolamines strongly affect pH and lead to Orange OT phenolic group deprotonation and subsequent increase in aqueous/micellar solubility. The morpholinium surfactant micelles reduce pKa of Orange OT phenolic group, enabling its deprotonation at the earlier stages of media alkalinization. Obtained surfactant – ethanolamine mixtures can solubilize very large amounts of hydrophobic dye, which can then be triggered to precipitate via acidification.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.22.00006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.00006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Aggregation of morpholinium surfactants with amino alcohols as additives: a close look
Mono-, di-, triethanolamine in a combination with methylmorpholinium and hydroxyethylmorpholinium surfactants were investigated for their aggregation and solubilizing properties. A cooperative behavior of the solubilization by mixed surfactant – ethanolamine systems is described. Ethanolamines strongly affect pH and lead to Orange OT phenolic group deprotonation and subsequent increase in aqueous/micellar solubility. The morpholinium surfactant micelles reduce pKa of Orange OT phenolic group, enabling its deprotonation at the earlier stages of media alkalinization. Obtained surfactant – ethanolamine mixtures can solubilize very large amounts of hydrophobic dye, which can then be triggered to precipitate via acidification.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.